Abstract
In the present paper we describe new heuristic technique, which can be applied to the optimization of pseudo-Boolean functions including Black-Box functions. This technique is based on a simple procedure which consists in transition from the optimization problem over Boolean hypercube to the optimization problem of auxiliary function in a specially constructed metric space. It is shown that there is a natural connection between the points of the original Boolean hypercube and points from new metric space. For a Boolean hypercube with fixed dimension it is possible to construct a number of such metric spaces. The proposed technique can be considered as a special case of Variable Neighborhood Search, which is focused on pseudo-Boolean optimization. Preliminary computational results show high efficiency of the proposed technique on some reasonably hard problems. Also it is shown that the described technique in combination with the well-known (1+1)-Evolutionary Algorithm allows to decrease the upper bound on the runtime of this algorithm for arbitrary pseudo-Boolean functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discrete Appl. Math. 123(1–3), 155–225 (2002)
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, vol. 185. IOS Press, Amsterdam (2009)
Burke, E., Kendall, G. (eds.): Search Methodologies, 2nd edn. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-6940-7
McWilliams, F., Sloan, N.: The Theory of Error-Correcting Codes. North Holland, Amsterdam (1983)
Luke, S.: Essentials of Metaheuristics, 2nd edn. George Mason University, Fairfax (2015)
Rudolph, G.: Convergence properties of evolutionary algorithms. Ph.D. thesis, Hamburg (1997)
Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002)
Stanley, R.: Enumerative Combinatorics. Cambridge University Press, Cambridge (2011)
Feller, W.: An Introduction to Probability Theory and its Applications, 3rd edn. Wiley, Hoboken (1970)
Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)
Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130(3), 449–467 (2001)
Hansen, P., Mladenović, N., Todosijević, R., Hanafi, S.: Variable neighborhood search: basics and variants. EURO J. Comput. Optim. 5(3), 423–454 (2016)
Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht (1997)
Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. JSAT 2(1–4), 1–26 (2006)
Rivest, R.L.: The MD4 message digest algorithm. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_22
Otpuschennikov, I., Semenov, A., Gribanova, I., Zaikin, O., Kochemazov, S.: Encoding cryptographic functions to SAT using TRANSALG system. In: The 22nd European Conference on Artificial Intelligence (ECAI 2016). Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 1594–1595. IOS Press (2016)
Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Biere et al. [2], pp. 131–153
Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In: The 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), pp. 1173–1178 (2003)
Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_24
Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT entering the SAT competition 2017. In: Balyo, T., Heule, M.J.H., Järvisalo, M. (eds.) SAT Competition 2017, vol. B-2017-1, pp. 14–15 (2017)
Ahuja, R.K., Ergun, O., Orlin, J.B., Punnen, A.P.: A survey of very large-scale neighborhood search techniques. Discrete Appl. Math. 123(1–3), 75–102 (2002)
Avella, P., D’Auria, B., Salerno, S., Vasil’ev, I.: A computational study of local search algorithms for italian high-school timetabling. J. Heuristics 13(6), 543–556 (2007)
Doerr, B.: Analyzing randomized search heuristics via stochastic domination. Theor. Comput. Sci. 773, 115–137 (2019)
Li, C., Manya, F.: MaxSAT. In: Biere et al. [2], pp. 613–632
Ansótegui, C., Heymann, B., Pon, J., Sellmann, M., Tierney, K.: Hyper-reactive tabu search for MaxSAT. In: Battiti, R., Brunato, M., Kotsireas, I., Pardalos, P.M. (eds.) LION 12 2018. LNCS, vol. 11353, pp. 309–325. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05348-2_27
Bouhmala, N., Øvergård, K.I.: Combining genetic algorithm with variable neighborhood search for MAX-SAT. In: Zelinka, I., Vasant, P., Duy, V.H., Dao, T.T. (eds.) Innovative Computing, Optimization and Its Applications. SCI, vol. 741, pp. 73–92. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66984-7_5
Buzdalov, M., Doerr, B.: Runtime analysis of the (1 + (\(\lambda \), \(\lambda \))) genetic algorithm on random satisfiable 3-CNF formulas. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2017), pp. 1343–1350. ACM Press (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Semenov, A.A. (2019). Merging Variables: One Technique of Search in Pseudo-Boolean Optimization. In: Bykadorov, I., Strusevich, V., Tchemisova, T. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2019. Communications in Computer and Information Science, vol 1090. Springer, Cham. https://doi.org/10.1007/978-3-030-33394-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-33394-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33393-5
Online ISBN: 978-3-030-33394-2
eBook Packages: Computer ScienceComputer Science (R0)