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Abstract. In the present paper we describe new heuristic technique,
which can be applied to the optimization of pseudo-Boolean functions
including Black-Box functions. This technique is based on a simple pro-
cedure which consists in transition from the optimization problem over
Boolean hypercube to the optimization problem of auxiliary function in
a specially constructed metric space. It is shown that there is a natural
connection between the points of the original Boolean hypercube and
points from the new metric space. For the Boolean hypercube with fixed
dimension it is possible to construct a number of such metric spaces.
The proposed technique can be considered as a special case of Vari-
able Neighborhood Search, which is focused on pseudo-Boolean opti-
mization. Preliminary computational results show high efficiency of the
proposed technique on some reasonably hard problems. Also it is shown
that the described technique in combination with the well-known (1+1)-
Evolutionary Algorithm allows to decrease the upper bound on the run-
time of this algorithm for arbitrary pseudo-Boolean functions.

Keywords: pseudo-Boolean optimization · local search · Variable Neigh-
borhood Search · (1+1)-Evolutionary Algorithm · Boolean satisfiability
problem

1 Basic notions and methods

Let {0, 1}n be a set of all possible binary vectors (strings) of length n. The set
{0, 1}n is sometimes called a Boolean hypercube. Let us associate with {0, 1}n a
set consisting of n symbols:X = {x1, . . . , xn}. The elements of X will be referred
to as Boolean variables. Further we will consider {0, 1}n as a set of all possible
assignments of variables from X . For an arbitrary X ′ ⊆ X by {0, 1}|X′| we will
denote a set of all possible assignments of variables from X ′.

A pseudo-Boolean function (PBF) [1] is an arbitrary total function of the kind

f : {0, 1}n → R. (1)

⋆ This is a version of the paper accepted to MOTOR 2019 conference
(http://motor2019.uran.ru/). In this version we fixed a minor number of typos and
presented more detailed proof of Lemma 4.

http://arxiv.org/abs/1908.00751v1
http://motor2019.uran.ru/
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Example 1. Consider an arbitrary Conjunctive Normal Form (CNF) C, where
X = {x1, . . . , xn} is a set of Boolean variables from this CNF. Let us associate
with an arbitrary α ∈ {0, 1}n the number of clauses that take the value of 1 when
their variables take the values from α. Denote the resulting function by fC . It is
easy to see that fC is a function of the kind fC : {0, 1}n → N0 (N0 = {0, 1, 2, . . .})
and max

{0,1}n
fC ≤ m, where m is the number of clauses in C. Then CNF C is

satisfiable if and only if max
{0,1}n

fC = m. The problem fC →
{0,1}n

max represents

the optimization formulation of the Boolean Satisfiability problem (SAT) and is
often referred to as MaxSAT [2]. This problem is NP-hard, so there is a huge
class of combinatorial problems, which can be effectively reduced to it.

The main result of the present paper is a technique applicable in the context
of several common metaheuristic schemes. Before proceeding to its description,
let us briefly describe the basic metaheuristics used below.

First, we will consider the simplest computational scheme, which belongs to
the class of the local search methods. The concept of a neighborhood in a search
space is at the core of the algorithms from this class. With each point of a
search space the neighborhood function [3] associates a set of neighboring points.
This set is called the neighborhood of the considered point. For an n-dimensional
Boolean hypercube the neighborhood function is of the following kind:

ℵ : {0, 1}n → 2{0,1}
n

. (2)

A simple way to define function (2) is to associate an arbitrary α ∈ {0, 1}n
with all points from {0, 1}n for which the Hamming distance [4] from α is not
greater than certain d. The number d is referred to as a radius of Hamming
neighborhood. Hereinafter by ℵd(α) we denote a neighborhood of radius d of an
arbitrary point α of a search space. By 〈{0, 1}n,ℵ1〉 we denote a space {0, 1}n
in which a neighboorhood of an arbitrary point α is ℵ1(α).

Below we give a simple example of the local search algorithm which is some-
times referred to as Hill Climbing (HC). We can use this algorithm to maximize
the functions of the kind (1). One iteration of the HC algorithm consists of the
following steps.

Input: an arbitrary point α ∈ {0, 1}n, a value f(α);
1. α – current point;
2. traverse the points from ℵ1(α) \ {α}, computing for each point α′ from this

set a value f(α′). If there is such a point α′, that f(α′) > f(α) then go to
step 3, otherwise, go to step 4;

3. α← α′, f(α)← f(α′), go to step 1;
4. α∗ ← α; (α∗, f(α∗)) is a local extremum of f on {0, 1}n;

Output: (α∗, f(α∗)).

By itself, Hill Climbing is a basic heuristic and, generally speaking, it does not
guarantee that the global extremum of the considered function will be achieved
(except for some specific cases). Usually, during the optimization of an arbitrary
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function (1) one attempts to go through a number of local extrema. As a result,
a point with the best value of the objective function (1) is considered to be an
output. The best value of this function found at the current moment is called
Best Known Value (BKV).

Without any exaggeration it can be said that over the past half century a
huge number of papers have been devoted to describing ways of escaping local
extrema. Listing the key papers in this direction would take up too much space.
A good review of the relevant results can be found in [3,5].

In some sense, one can view the evolutionary algorithms [5] as the alternative
to local search methods. This class of algorithms can be described as ”a varia-
tion on a theme of random walk”. The simplest example of such algorithms is
the (1+1)-Evolutionary Algorithm shortly denoted as (1+1)-EA [6]. Below we
present the description of one iteration of this algorithm, which will be referred
to as (1+1)-random mutation.

Input: an arbitrary point α ∈ {0, 1}n, a value f(α);
– make (1+1)-random mutations of α: by going through α in fixed order,

change every bit to the opposite with probability p; let α′ be a result of a
random mutation of α;

– if for a point α′ it holds that f(α′) ≥ f(α) (assuming that the maximization
problem for function (1) is considered), then the next (1+1)-random muta-
tion is applied to α′, otherwise, (1+1)-random mutation is applied to α (this
situation is called stagnation);
Output: (α′, f(α′)), where α′ is the result of several random mutations.

The probability p is usually determined as p = 1/n. It should be noted, that
for any function of the kind (1) and points α, α′ ∈ {0, 1}n the probability of
transition α → α′ is non-zero. Let α# be the point of the global extremum
of function (1). According to [7], the expected running time of the (1+1)-EA,
denoted further as E(1+1)−EA, is defined as the mean of the (1+1)-random mu-

tations needed to achieve α# from an arbitrary initial point α ∈ {0, 1}n.
The value E(1+1)−EA can be considered as a measure of efficiency for (1+1)-

EA. If the value of function (1) is given by the oracle, the nature of which is not
taken into account, then it could be shown (see [7]), that E(1+1)−EA ≤ nn. It
is important that this bound is reached (with minor reservations) for explicitly
specified functions [7]. On the other hand, for an equiprobable choice of points
from a hypercube {0, 1}n the expected value for the number of checked points
before achieving α# is not greater than 2n. Thus, in the worst case scenario,
(1+1)-EA is extremely inefficient. However, when applied to many practical
tasks (1+1)-EA can be surprisingly productive.

2 Merging Variables Principle (MVP)

In this section we describe a simple technique which can be applied to the prob-
lems of optimization of arbitrary functions of the kind (1), including Black-Box
functions.
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Consider an arbitrary function (1) and the problem f →
{0,1}n

max (or f →
{0,1}n

min). Let us associate with {0, 1}n a set of Boolean variables X = {x1, . . . , xn}
(considering {0, 1}n as a set of all possible assignments of variables from X).

Let us fix an arbitrary positive integer r : 1 ≤ r < n and define a new set
of variables Y = {y1, . . . , yr}. Consider an arbitrary surjection µ : X → Y .
With an arbitrary yj ∈ Y , j ∈ {1, . . . , r} we associate a set Xj of preimages
of yj in the context of mapping µ. Let us link with yj a set Dj , which consists

of 2|Xj | different symbols of some alphabet: Dj = {βj
1, . . . , β

j

2|Xj |}, and fix an

arbitrary bijection ωj : Dj → {0, 1}|Xj|. Consider a set

Dµ = D1 × . . .×Dr.

Definition 1. The elements of Dj are called the values of variable yj, j ∈
{1, . . . , r} and Dj is called the domain of this variable. An arbitrary string
β ∈ Dµ is called an assignment of variables from Y . Implying all notions which
were introduced above we will say that merging mapping µ is defined. The ele-
ments of Y are referred to as merged variables.

Regarding the set Dµ we note that the Hamming metric is naturally defined
on Dµ and thus Dµ is a metric space.

Lemma 1. An arbitrary merging mapping µ : X → Y defines a bijective map-
ping

τµ : Dµ → {0, 1}n.
Proof. Assume that for a set of Boolean variablesX , |X | = n, a merging mapping
µ, µ : X → Y , |Y | = r, 1 ≤ r < n is given. The fact that µ is surjection means
that sets Xj , j ∈ {1, . . . , r} do not intersect, and any variable from X turns out
to be in some set of the kind Xj . Consider an arbitrary assignment β ∈ Dµ.
Let βj be a symbol, located in the coordinate with the number j, j ∈ {1, . . . , r}
of β. Consider set Xj. Let α

j be a binary string associated with an element βj

by bijection ωj. Let us view αj as an assignment of variables from Xj . Thus,
bijections ωj , j ∈ {1, . . . , r} associate all coordinates of β with binary strings
thereby setting the values of all variables from X . Consequently, an arbitrary
string β ∈ Dµ is associated with some string α ∈ {0, 1}n. Denote the resulting
function by τµ : Dµ → {0, 1}n. Note that Range τµ = {0, 1}n. If we assume that
there is a vector α ∈ {0, 1}n, which does not have a preimage in Dµ for a given
τµ, then it contradicts with the properties of bijections ωj, j ∈ {1, . . . , r}. Thus,
τµ is a surjection. Also it is easy to see, that two arbitrary different elements
from Dµ have different images for a given τµ (injection). Consequently, τµ is
bijection. The Lemma 1 is proved.

Definition 2. Function τµ, defined in the proof of Lemma 1, is called a bijection
induced by a merging mapping µ.

Example 2. Assume that X = {x1, x2, x3, x4, x5}. Let us define the mapping
µ : X → Y , Y = {y1, y2, y3} as follows:

X1 = {x1, x4}, X2 = {x2}, X3 = {x3, x5}.



Merging Variables Principle 5

The domains of variables y1, y2, y3 are the following: D1 = {β1
1 , β

1
2 , β

1
3 , β

1
4}, D2 =

{β2
1 , β

2
2}, D3 = {β3

1 , β
3
2 , β

3
3 , β

3
4 , }. Bijections ωj , j ∈ {1, 2, 3} are defined as it is

shown in figure 1. Thus, the mapping τµ : Dµ → {0, 1}5 is defined. By Lemma
1 it is a bijection. For example, τµ(β

1
3 , β

2
2 , β

3
4) = (11101).

ω1 ω2 ω3

β1

1 00

β1

2 01

β1

3 10

β1

4 11

β2

1 0

β2

2 1

β3

1 00

β3

2 01

β3

3 10

β3

4 11

Fig. 1. Bijections ωj , j ∈ {1, 2, 3} which define the mapping τµ : Dµ → {0, 1}5

The main idea of the technique presented below consists in transitioning
from the optimization problem of the original function (1) on {0, 1}n to the op-
timization problem of specially constructed function on Dµ (for a given merging
mapping µ : X → Y ).

Definition 3. Consider an optimization problem for an arbitrary function (1).
Let µ : X → Y be an arbitrary merging mapping. Consider the function

Ff,µ : Dµ → IR,

defined in the following way: Ff,µ(β) = f(τµ(β)), in which τµ is a bijection
induced by µ. Function Ff,µ is called µ-conjugated with f .

Lemma 2.

extr{0,1}nf = extrDµFf,µ.

(here extr can be understood as min or max).

Proof. In the context of Lemma 1 this equality is in fact evident. Indeed, there is
a bijection τµ between {0, 1}n and Dµ. The value of function Ff,µ in an arbitrary
point β ∈ Dµ is equal to the value of f in point α = τµ(β). Thus, the smallest
(largest) value of Ff,µ on Dµ is equal to the smallest (largest) value of f on
{0, 1}n. The Lemma 2 is proved.

The following property gives us the exact value of the number of different
merging mappings for the set X of power n.

Lemma 3. Let f be an arbitrary function of the kind (1). Then, the number of

different merging mappings of the kind µ : X → Y is
∑n−1

r=1 r! · S(n, r), where
S(·, ·) – is a Stirling number of the second kind.

Proof. Assume that X = {x1, . . . , xn}. For an arbitrary merging mapping µ :
X → Y a set Y can contain 1, 2, . . . , n − 1 variables. An arbitrary merging
mapping is constructed in two steps. The first step is to divide X into r parts
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(the order of the elements in each part does not matter). As a result there is a
composition of sets X1, . . . , Xr. At the second step each set Xj , j ∈ {1, . . . , r} is
associated with a variable from Y = {y1, . . . , yr}. The number of unordered par-
titionings of n-element set into r parts is S(n, r) (see, for example, [8]). Each un-
ordered partitioning of X into r parts can be mapped to Y (|Y | = r) in r! ways.
The Lemma 3 is proved.

Let us summarize the contents of the present section. The Merging Variables
Principle (MVP) consists in the transition from the optimization of an arbitrary
function f of the kind (1) over a Boolean hypercube to the optimization problem
of a function which is µ-conjugated with f over metric space Dµ. The main goal
of the further sections is to demonstrate the benefits of MVP.

3 Combining MVP with local search

For an arbitrary function f of the kind (1) consider a problem f →
{0,1}n

max.

Assume, that {0, 1}n is a set of all possible assignments of variables from set
X = {x1, . . . , xn}. Consider a merging mapping µ : X → Y , Y = {y1, . . . , yr},
1 ≤ r < n and a metric space (with Hamming metric) Dµ = D1 × . . . × Dr.
Let τµ : Dµ → {0, 1}n be a bijection induced by µ. We solve the maximization
problem of function Ff,µ on Dµ. Let us define the neighborhood function over
Dµ in the following way. For an arbitrary β ∈ Dµ assume that

ℵµ1 (β) = {γ ∈ Dµ : dH(β, γ) ≤ 1}.

In other words, the neighborhood of an arbitrary point β contains all points from
Dµ, for which the Hamming distance dH between them and β is at most 1. Let us
denote a metric space Dµ with the neighborhood structure ℵµ1 by 〈Dµ,ℵµ1 〉.

Below we will use a term ”random merging mapping”, which refers to any
construction of mapping µ : X → Y by means of a random experiment. The most
natural is a scheme of random arrangements of particles in boxes [9]. Specifically,
for a fixed r, 1 ≤ r < n assume that an arbitrary variable yj , j ∈ {1, . . . , r} is
associated with a box which can accommodate n particles. A set X is considered
as a set containing n particles which are randomly scattered in r boxes according
to the sampling without replacement.

Below we present a variant of Hill Climbing algorithm, which uses MVP
(Merging Variable Hill Climbing algorithm, MVHC).

Input: an arbitrary point α ∈ {0, 1}n, f(α);
1. define a random merging mapping µ : X → Y , Y = {y1, . . . , yr}, 1 ≤ r < n;
2. construct a point β = τ−1

µ (α) in 〈Dµ,ℵµ1 〉, Dµ = D1 × . . . ×Dr, where Dj ,
j ∈ {1, . . . , r} are domains of yj ;

3. run HC in 〈Dµ,ℵµ1 〉 starting from point β for an objective function Ff,µ; let
β∗ be a local maximum, achieved in one iteration of HC;

4. construct a point α∗ = τµ(β
∗) (α∗ ∈ {0, 1}n);

Output: (α∗, f(α∗)).
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Theorem 1. In the context of the MVHC scheme described above let β =
τ−1
µ (α) be a point in 〈Dµ,ℵµ1 〉 which is not a local maximum. Then f(α∗) > f(α),
where α∗ = τµ(β

∗) and β∗ is a local maximum, achieved by HC in 〈Dµ,ℵµ1 〉 in
one iteration, starting from point β.

Proof. Let µ, τµ, D
µ, α, α∗, β, β∗ be the objects from the description of the MVHC

algorithm and the theorem formulation. Since β is not a local maximum in the
space 〈Dµ,ℵµ1 〉, then Ff,µ(β

∗) > Ff,µ(β). Thus, (by the definition of function
Ff,µ) it follows that f(τµ(β

∗)) > f(τµ(β)). Therefore, f(α
∗) > f(α). The Theo-

rem is proved.

The MVHC algorithm can be used to construct an iterative computational
scheme in which the random merging mapping is launched multiple times: in
particular, the output α∗ of an arbitrary iteration can be used as an input for
the following iteration.

Below we would like to comment on a number of features of the proposed
algorithm and show the techniques that can improve the practical effectiveness
of MVHC. The proofs for the properties described below are not shown due to
their simplicity and limitations on the volume of the paper.

a. Note that point α can be a local maximum of function (1) in the space
〈{0, 1}n,ℵ1〉, while point β = τ−1

µ (α) is simultaneously not a local maximum
of function µ-conjugated with (1) in 〈Dµ,ℵµ1 〉. This fact makes it possible to
view MVHC as a special case of Variable Neighborhood Search (VNS) meta-
heuristic strategy [10,11,12]. Indeed, let α be an arbitrary point in {0, 1}n,
µ : X → Y be an arbitrary merging mapping and τµ : Dµ → {0, 1}n be a
bijection induced by µ. Define the neighborhood of α in {0, 1}n as follows:

ℵ̃(α) = {τµ(γ)|γ ∈ ℵµ1 (τ−1
µ (α))}, (3)

where ℵµ1 (β) is the Hamming neighborhood of radius 1 for the point β in Dµ.
Note that (3) defines the neighborhood function over {0, 1}n. The different
merging mappings will yield different neighborhood structures in the context
of (3). From this point of view, the Theorem 1 is the variant of the main
VNS principle saying that the local extremum of a function with regard to
one neighborhood structure may not be a local extremum of this function
with regard to a different neighborhood structure. The Lemma 3 says that in
the context of MVHC there exist numerous ways to construct neighborhood
structures even for small n and r (say, n = 100 and r = 10).

b. Let µ : X → Y , |X | = n, |Y | = r be an arbitrary random mapping.
Let X1, . . . , Xr be the sets of preimages of variables from Y with respect
to µ, and |X1| = l1, . . . , |Xr| = lr; l1 + . . . + lr = n. Then for an arbitrary
point β ∈ Dµ the following holds:

|ℵµ1 (β)| =
r
∑

j=1

2lj + (1− r). (4)
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This fact means that for domains of relatively large size the traversal of
points from the neighborhood ℵµ1 (β) can be naturally performed in paral-
lel: each domain should be processed by an individual computing process.
In more detail, assume that we have t independent computing processes.
Consider an arbitrary β ∈ Dµ and let β1 be an arbitrary point from Dµ,
which differs from β in coordinate number 1 while coinciding with β in the
remaining coordinates. It is clear that in total there are 2l1 − 1 points of this
kind. Let us traverse such points and compute the corresponding values of
function Ff,µ using a computing process number 1. We can treat the points
which differ from β only in the second coordinate in the similar fashion,
etc. For t < r once the computing process finished the current task it can
take any domains which have not yet been processed. One process should
perform the supervisor function and track whether the current Best Known
Value have been improved.

c. Let µ be an arbitrary merging mapping and β∗ be a local extremum of
Ff,µ in 〈Dµ,ℵµ1 〉. It is easy to show that in this case α∗ = τµ(β

∗) is a local
extremum of f in 〈{0, 1}n,ℵ1〉. Assume that µk, k ∈ {1, . . . ,K} are random
merging mappings and α∗ ∈ {0, 1}n is such a local extremum that points
β∗
k = τ−1

µk
(α∗) are local extrema in the spaces Dµk , k ∈ {1, . . . ,K} for a

large enough K. Then let us call the point α∗ strong local extremum.
d. Consider an arbitrary merging mapping µ : X → Y . Let α be an arbitrary

point in {0, 1}n and ℵ̃(α) be the neighborhood of α defined (with respect
to fixed µ) in accordance with (3). Assume that l∗ = max{l1, . . . , lr}. It is
easy to show that for r ≥ 2 it holds that ℵ̃(α) ⊂ ℵl∗(α). The power ℵ̃(α)
(it is expressed by the number in the right part of (4)) can be significantly
smaller than the power of ℵl∗(α). For example, if n = 100, r = 10 then
l1 = . . . = l10 = 10, |ℵ̃(α)| = 10×210−9 = 10231, while |ℵ10(α)| > 1, 5×1013.

The property d essentially means that the merging mapping technique may
be useless if the algorithm reached such a local extremum α∗, that the closest
point (Hamming distance-wise) from {0, 1}n with the better objective function
value is at a distance > l∗ from α. On the first glance it might seem that this
fact significantly limits the applicability of the proposed method. However, it is
possible to describe the supplementary technique for MVHC which is based on
the idea to store strong local extrema and use them to direct the search process.
In this context we will use the tabu lists concept which serves as a basis of the
tabu search strategy [13].

So, a strong local extremum is such a local extremum in {0, 1}n, for which
it was not possible to improve BKV even after a significant number of different
merging mappings µk, k ∈ {1, . . . ,K}. Let us denote such a point as α∗

1. The goal
is to move from α∗

1 to a point with the better BKV. Since we do not employ
any knowledge about function f , it means that such transitions should rely on
heuristic arguments. The first of the arguments is to escape the neighborhood
of the kind ℵl∗1 (α∗

1) in {0, 1}n, where l∗1 is a ”critical” domain size that is known
from the search history. On the other hand, due to various reasons appealing
to the ”locality principle” it is undesirable to move ”too far” from α∗

1. It is
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especially relevant if during the transition to α∗
1 the BKV have been improved

multiple times. Thus, the simplest step is to move to an arbitrary point situated
at a distance of l∗1 + 1 from α∗

1. Let α2 be such a point. Assume that we launch
MVHC from this point and α∗

2 is the resulting strong local extremum of f , which
is different from α∗

1. Similar to l∗1 we can define critical domain size l∗2 used during
the transition from α2 to α∗

2, critical domain size l∗3 and etc.
As a result, assume that we have strong local extrema α∗

1, . . . , α
∗
R and our

goal is to construct a point αR+1 ∈ {0, 1}n to launch the R + 1-th iteration of
MVHC from it. Taking into account the above, we have a problem of choosing
next current point αR+1 as a point which satisfies a system of constraints of the
following kind:

(dH(αR+1, α
∗
1) = L1) ∧ . . . ∧ (dH(αR+1, α

∗
R) = LR). (5)

The numbers L1, . . . , LR can be chosen according to different criteria. Let us
describe the simplest one. Consider the following system of constraints:

(dH(αR+1, α
∗
1) = l∗1 + 1) ∧ . . . ∧ (dH(αR+1, α

∗
R) = l∗R + 1). (6)

If there exists a point αR+1 that satisfies (6) then it is chosen as a starting
point for the next MVHC iteration. If such a point does not exist, then we call
(6) incompatible. In this case it is possible to relax some of the constraints of
the kind dH(αR+1, α

∗
q) = l∗q + 1 by replacing them with constraints of the kind

dH(αR+1, α
∗
q) = Lq, where Lq ≥ l∗q + 2, q ∈ {1, . . . , R}. The resulting system of

constraints of the kind (5) is again to be tested for compatibility.
Let us consider the problem of testing the compatibility of an arbitrary sys-

tem of the kind (5). Consider an arbitrary constraint of the kind dH(αR+1, α
∗) =

L, where α∗ = (α1, . . . , αn) is a known Boolean vector and L is a known nat-
ural number. Let us represent the unknown components of vector αR+1 using
Boolean variables z1, . . . , zn. Now consider the expression

(z1 ⊕ α1) + . . .+ (zn ⊕ αn) = L, (7)

where ⊕ is the sum mod2, and + is an integer sum.
We can consider (7) as an equation for unknown variables z1, . . . , zn. It is easy

to see that a set of vectors αR+1, which satisfy the constraint dH(αR+1, α
∗) = L,

coincides with the set of solutions of the equation (7). To solve the systems of
equations of the kind (7) or to prove the inconsistent of such systems we can use
any complete algorithm for solving SAT. The corresponding reduction to SAT
is performed effectively using the procedures described, for example, in [14].

Thus, to choose new current points in the context of MVHC we can employ
a strategy in which SAT oracles are combined with the tabu lists containing
strong local extrema.

4 Combining MVP with evolutionary computations

Now let us consider how MVP can be combined with evolutionary algorithms.
In particular, let us study the MV-variant of (1+1)-EA. As it was stated above,
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for an arbitrary function of the kind (1) in [7] there was obtained the following
upper bound: E(1+1)−EA ≤ nn. Also in [7] there was given an example of a
function (the Trap function) for which this bound is asymptotically achieved
(in terms of [7]).

In the description of the MV-variant of (1+1)-EA (we denote the correspond-
ing algorithm as (1+1)-MVEA) we want to preserve the following property of
the original algorithm: that the expected value of the number of bits in which
the Boolean vector is different from its (1+1)-random mutation should be 1.

Assume that there is an arbitrary merging mapping µ : X → Y , |X | = n,
|Y | = r, 1 ≤ r < n. For an arbitrary point α ∈ {0, 1}n perform the following
steps.

Input: arbitrary point α ∈ {0, 1}n, f(α);
1. construct a point β = τ−1

µ (α); perform r Bernoulli trials with probability of
success p = 1/r; let {i1, . . . , iq} ⊆ {1, . . . , r} be the numbers of successful
trials; for each j ∈ {i1, . . . , iq} consider the domain Dj of a variable yj , let
Xj be the set of preimages of yj for the mapping µ, ωj : Dj → {0, 1}|Xj| is
a fixed bijection, βj is the value of yj in β;

2. consider the Boolean vector αj = ωj(βj) of size lj = |Xj|; perform (1+1)-
random mutation on αj with probability of success equal to 1

lj
, let α′

j be the

result of the mutation, β′
j = ω−1

j (α′
j);

3. construct a point β′ in Dµ: in the coordinate with number j ∈ {i1, . . . , iq}
the point β′ has β′

j ; in the remaining coordinates with numbers from the set
{1, . . . , r} \ {i1, . . . , iq} the point β′ coincides with β;

4. construct a point α′ = τµ(β
′) (α′ ∈ {0, 1}n);

Output: (α′, f(α′)).

Definition 4. To the described sequence of actions the result of which is the
transition α→ α′ we will refer as (1+1)-merging variable random mutation.

Lemma 4. For an arbitrary merging mapping µ the expected value of the num-
ber of bits in which the points α and α′ differ is 1.

Proof. Let µ be an arbitrary merging mapping and α be an arbitrary vector from
{0, 1}n. Let us apply to α (1+1)-merging variable random mutation with respect
to µ. Consider two kinds of random variables. The random variables of the first
kind are the independent Bernoulli variables denoted as ζj , j ∈ {1, . . . r}. For
each j ∈ {1, . . . r} the variable ζj has spectrum {0, 1} and distribution {1− 1

r
, 1
r
}.

If ζj = 1 then we apply to aj an original (1+1)-random mutation with success
probability 1

lj
, where lj = |Xj |. As above, here we mean that αj is an assignment

of variables from Xj .

Also consider the random variables ξj : the value of each such variable is equal
to the number of bits changed in vector αj , j ∈ {1, . . . r}, as a result of applying
to αj (1+1)-random mutation with success probability 1

lj
(lj = |Xj|). Thus, for

each j ∈ {1, . . . r} the variable ξj takes value from the set {0, 1, . . . , lj}. Then
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the number of changed bits in vector αj after (1+1)-merging variable random
mutation is a random variable

θ =

r
∑

j=1

ζj · ξj . (8)

Note that for each j ∈ {1, . . . r} the variables ζj and ξj are obviously indepen-
dent. Then from (8) the following holds:

E[θ] =

r
∑

j=1

E[ζj · ξj ] =
r
∑

j=1

E[ζj ] ·E[ξj ] = r · 1
r
· 1 = 1.

Thus, the Lemma 4 is proved.

Definition 5. For a fixed merging mapping µ, the (1+1)-merging variable evo-
lutionary algorithm ((1+1)-MVEA) is a sequence of (1+1)-merging variable ran-
dom mutations. In the context of maximization problem of an arbitrary function
(1): the next mutation is applied to α′ if f(α′) ≥ f(α). Otherwise, the next
mutation is applied to α (stagnation).

The following definition is a variant of the Definition 5 from [7] with relation to
(1+1)-MVEA.

Definition 6. Let f be an arbitrary function of the kind (1) and α# be a global
extremum of function f on {0, 1}n. Let µ be an arbitrary merging mapping.
We will define the expected running time of (1+1)-MVEA as the mean of the
number of (1+1)-merging variable random mutations that have to be applied to
an arbitrary point α ∈ {0, 1}n until it transforms into α#. Denote this value by
Eµ

(1+1)−MV EA
.

Theorem 2. Assume that f is an arbitrary function of the kind (1), µ : X → Y
is an arbitrary merging mapping: X = {x1, . . . , xn}, Y = {y1, . . . , yr}, 1 ≤ r <
n, lj = |Xj| ≥ 2 for all j ∈ {1, . . . , r} and l = max{l1, . . . , lr}. Then the following
estimation holds:

Eµ

(1+1)−MV EA
≤ rr · ln. (9)

Proof. Let µ be an arbitrary merging mapping for which all the conditions of
the theorem are satisfied. Now let us reason in a way similar to the proof of
the Theorem 6 in [7]. Let α ∈ {0, 1}n be an arbitrary point and α# be a global
extremum of the function (1) on {0, 1}n. Denote by Pα→α# the probability
that α will transition into α# as a result of one iteration of the (1+1)-MVEA-
algorithm. Consider the points β = τ−1

µ (α), β# = τ−1
µ (α#) from the space Dµ.

In this context, for an arbitrary j ∈ {1, . . . , r} with the coordinates βj , β
#
j there

will be associated the binary strings αj , α
#
j .

Now let us construct the lower bound for the probability of an event that
as a result of one (1+1)-MVEA iteration there will take place a transition from
α to α#. It is clear that this may happen if and only if there takes place the
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transition from β to β#. Let q = dH(β, β#) be the Hamming distance between
β and β# in the space Dµ. Assume that the set J = {i1, . . . , iq} ⊆ {1, . . . , r}
contains the numbers of coordinates in β, in which this point differs from β#, and
U = {1, . . . , r} \ J . Let us denote by σ = (σ1, . . . , σr), σi ∈ {0, 1}, i ∈ {1, . . . , r}
the set of results of a sequence of r Bernoulli trials with success probability 1/r
(as usually, we assume that σ1 = 1 corresponds to success).

The transition β → β# takes place if and only if within one (1+1)-merging
variable randommutation the following two events denoted byAj and Bu happen
simultaneously:

a. for an arbitrary j ∈ J the event Aj takes place if and only if βj → β#
j ;

b. for an arbitrary u ∈ U the event Bu takes place if and only if βu → βu.

It is easy to see that all the events of the kind Aj , Bu, j ∈ J, u ∈ U are indepen-
dent, thus

Pα→α# =





∏

j∈J

Pr{Aj}



 ·
(

∏

u∈U

Pr{Bu}
)

.

For an arbitrary k ∈ {1, . . . , r} let us denote by pk the probability that the
result of the random (1+1)-mutation with probability of success 1

lk
of the string

αk = ωk(βk) is the string α#
k . Then for any j ∈ J it holds that Pr{Aj} = 1

r
· pj .

For an arbitrary u ∈ U the event Bu can happen in one of the two cases: first
if σu = 0, and, second, if σu = 1, but the result of the (1+1)-random mutation
with the probability of success 1

lu
of the string αu = ωu(βu) is the string αu.

In the first case, Pr{Bu} = (1− 1
r
). In the second case, Pr{Bu} = 1

r
· (1− 1

lu
)lu .

Thus, in any case when r ≥ 2, lu ≥ 2 it holds that Pr{Bu} ≥ 1
r
· 1

l
lu
u
. Taking this

fact into account the following bound holds:

Pα→α# ≥





1

rq
·
∏

j∈J

pj



 ·
(

1

rr−q
·
∏

u∈U

1

lluu

)

. (10)

In accordance with [7] for an arbitrary k ∈ {1, . . . , r}, such that lk ≥ 2, the
following holds: pk ≥ 1

l
lk
k

. Together with (10) this fact gives us the next bound:

Pα→α# ≥ 1

rr
·

∏

k∈{1,...,r}

1

llkk
. (11)

Let us emphasize that (11) holds for an arbitrary α ∈ {0, 1}n. Assume that
l = max{l1, . . . , lr}. Then, taking into account that

∑r
k=1 lk = n, it follows

from (11):

Pα→α# ≥ 1

rr
· 1
ln
.

The bound (9) follows from the latter inequality. The Theorem 2 is thus proved.
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The bound (9) looks a little surprising since it is actually easy to determine
the merging mappings with such parameters r and l that the corresponding
variant of the bound (9) becomes significantly better than the similar bound for
(1+1)-EA shown in [7].

Definition 7. Assume that |X | = n, |Y | = r, 1 ≤ r < n and n = ⌊n
r
⌋ · r + b,

where b, b ∈ {0, . . . , r − 1} is the remainder from the division of n by r. Let
µ : X → Y be an arbitrary merging mapping, such that for b sets of the kind Xj,
j ∈ {1, . . . , r} it holds that |Xj | = ⌊nr ⌋ + 1, and for the remaining r − b sets of
such kind |Xj | = ⌊nr ⌋. Let us refer to such µ as uniform merging mapping.

Corollary 1. Let µ : X → Y be an arbitrary uniform merging mapping such
that lj ≥ 2 for all j ∈ {1, . . . , r}. Then there exists such a function δ(n) : 1 <
δ(n) ≤ n, that the following evaluation holds:

Eµ

(1+1)−MV EA
≤ n

n·
(

1
δ(n)

−
logn δ(n)

δ(n)
+logn(δ(n)+1)

)

. (12)

Proof. Let µ : X → Y be an arbitrary uniform merging mapping. By definition
it means that 2 ≤ l ≤ n

r
+ 1 for all j ∈ {1, . . . , r} and, thus we can use the

evaluation (9):

Eµ

(1+1)−MV EA
≤ rr ·

(n

r
+ 1
)n

. (13)

Now introduce δ(n) : δ(n) = n/r. Then 1 < δ(n) ≤ n. Taking this into account
we can transform (13) as follows:

Eµ

(1+1)−MV EA
≤
(

n

δ(n)

)
n

δ(n)

· (δ(n) + 1)n = n
n

δ(n) · (δ(n))−
n

δ(n) · (δ(n) + 1)n =

= n
n

δ(n) · n− n
δ(n)

·logn δ(n) · nn·logn(δ(n)+1) = n
n·

(

1
δ(n)

−
logn δ(n)

δ(n)
+logn(δ(n)+1)

)

.

Thus the Corollary 1 is proved.

Based on (12) it is possible to give a number of examples of uniform merging
mappings, that provide better worst-case-estimations of (1+1)-MVEA for an
arbitrary function of the kind (1) compared to the similar estimation for (1+1)-
EA from [7]. Indeed, for example for δ(n) ∼ 3

√
n and for any n ≥ 27 it follows

from (12) that Eµ

(1+1)−MV EA
. n

n·( 1
3√n

− 1

3 3√n
+ 1

2 ) (here it is taken into account

that for n ≥ 27 it holds that logn(
3
√
n+1) < 1

2 ). Thus in this case the following

holds Eµ

(1+1)−MV EA
. n(n

2 + 2
3n

2/3).

5 Preliminary computational results

The MVHC was implemented in the form of a multi-threaded C++ application.
It employs the parallel variant of the procedure for traversing the neighborhoods
in the search space (see Section 3).
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In the role of test instances we considered the problems of finding preimages
of some cryptographic functions reduced to the Boolean Satisfiability problem
(SAT). Such instances are justified to be hard, thus they can be viewed as a
good test suite to compare the effectiveness of combinatorial algorithms. At the
current stage we considered the problems of finding preimages of a well-known
MD4 cryptographic hash function [15] with additional constraints on the hash
value. In particular, the goal was to find such 512-bit inputs that yield MD4
hash values with leading zeros. This problem can be reduced to SAT effectively.
For this purpose we employed the Transalg software system [16].

Let {0, 1}512 → {0, 1}128 be a function which is defined by the MD4 algo-
rithm. Let C be a CNF which encodes this algorithm. In the set of variables
from C let us select two sets. First set is X in, which consists of 512 Boolean
variables encoding an input of MD4. Second one is Xout – a set of 128 Boolean
variables encoding the output of MD4. In the set Xout select k variables encod-
ing the leading bits of the hash value, and assign these variables with value 0.
Denote the resulting CNF as Ck. This CNF is satisfiable and from any satisfying
assignment one can effectively extract such α ∈ {0, 1}512 for which the leading
k bits of corresponding MD4 hash value are equal to zero.

To find the satisfying assignment for Ck we used two approaches. First we
applied to Ck the multithreaded solvers, based on the CDCL algorithm [17],
that won the yearly SAT competitions in recent years. In the second approach
we used the MVHC algorithm described in the Section 3 of the present paper.
Consider, a set of variables X in, |X in| = 512 in CNF Ck. Associate an arbitrary
vector α ∈ {0, 1}512 with a set of literals over variables from X in. Recall, that a
literal is either the variable itself or its negation. If a component of vector α corre-
sponding to a variable xi, i ∈ {1, . . . , 512} takes value 1, then the corresponding
literal is xi. Otherwise, the literal is ¬xi. All such literals are conjunctively added
to CNF Ck and the resulting CNF is denoted by Ck(α). It is well known that
set X in is a Strong Unit Propagation Backdoor Set (SUPBS) for CNF Ck [18].
This means that the satisfiability of CNF Ck(α) can be checked in time linear on
the size of this CNF using a simple procedure of Boolean constraints propagation
called Unit Propagation Rule [17]. Thus, we consider function of the kind (1)
which associates with an arbitrary α ∈ {0, 1}512 a number of clauses in Ck(α)
that take the value of 1 as a result of application of Unit Propagation rule to
CNF Ck(α). If the value of this function is equal to the number of clauses that
are satisfied in Ck(α), then α is a MD4 preimage of a hash value with k leading
zero bits. For this function the problem of maximization on {0, 1}512 was solved
using MVHC algorithm, in which uniform merging mapping was employed.

All tested algorithms were run on a personal computer (Intel Core i7, 16
GB RAM) in 8 threads. Since these algorithms are randomized, the result of
each test is an average time of three independent launches for each algorithm.
The obtained results are presented in Table 1.
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Table 1. An average time (in seconds) of finding a MD4 preimage for hash value with
k leading zero bits. For MVHC algorithm an uniform merging mapping was used

Solver k = 18 k = 20 k = 22

MVHC (l=4) 244.8 1028 2126

MVHC (l=8) 490.1 1044.8 2003.1

MVHC (l=12) 30 105.9 1882.8

cryptominisat [19] 429.1 1197.9 3197.5

plingeling [20] 2175.1 1840.3 4218.4

6 Related Work (briefly)

As it was mentioned above, there is a large set of metaheuristics and corre-
sponding discussion contained in the monograph [5] by S. Luke. One of the
first papers in which some complexity estimations of the simplest evolutionary
algorithm (1+1)-EA were presented was G. Rudolf’s dissertation [6].

Variable Neighborhood Search method (VNS) was first proposed in [10] and
developed in subsequent papers: [11,12] and a number of others. Also we would
like to note that the ideas underlying the MVP are similar in nature to those pre-
viously used in papers dedicated to the application of Large Scale Neighborhood
Search [21,22].

A number of results on the complexity estimation of evolutionary algo-
rithms originates in [7]. These studies are actively conducted to the present
day. From the latest results in this area one should note [23].

We emphasize that MaxSAT is not the main object of study of the present
paper. The special case of MaxSAT, related to the preimage finding problem of
cryptographic functions, was considered only as an example of the maximization
problem of pseudo-Boolean function. Listing the key papers devoted to SAT and
MaxSAT would take up too much space. In this context, we refer only to the
well-known handbook [2] and, in particular, to its chapter on MaxSAT [24].
It should be noted that in a number of papers various metaheurists were used to
solve MaxSAT, employing both local search (see [25,26], etc.) and the concept
of evolutionary computations (see, for example, [26,27]).

7 Conclusion and Acknowledgements

In the present paper we described a metaheuristic technique focused on the
problem of pseudo-Boolean optimization. Arguments were given for using this
technique both in combination with local search methods and in conjunction
with evolutionary algorithms. The proposed technique when applied to local
search methods can be considered as a special case of Variable Neighborhood
Search. The first program implementation of the technique turned out to be quite
effective in application to some reasonably hard problems of pseudo-Boolean
optimization.
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