Abstract
Recent advances in the field of Neural Architecture Search (NAS) have made it possible to develop state-of-the-art deep learning systems without requiring extensive human expertise and hyperparameter tuning. In most previous research, little concern was given to the resources required to run the generated systems. In this paper, we present an improvement on a recent NAS method, Efficient Neural Architecture Search (ENAS). We adapt ENAS to not only take into account the network’s performance, but also various constraints that would allow these networks to be ported to embedded devices. Our results show ENAS’ ability to comply with these added constraints. In order to show the efficacy of our system, we demonstrate it by designing a Recurrent Neural Network (RNN) that predicts words as they are spoken, and meets the constraints set out for operation on an embedded device.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning (2017). https://arxiv.org/abs/1611.01578
Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8, 229–256 (1992)
Pham, H., Guan, M., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via parameters sharing (2018). http://proceedings.mlr.press/v80/pham18a/pham18a.pdf
Elsken, T., Metzen, J.H., Hutter, F.: Efficient multi-objective neural architecture search via lamarckian evolution. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ByME42AqK7
Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. CoRR, vol. abs/1707.07012 (2017). http://arxiv.org/abs/1707.07012
Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. CoRR, vol. abs/1802.01548 (2018). http://arxiv.org/abs/1802.01548
Kandasamy, K., Schneider, J., Pczos, B., Xing, E.P.: Neural architecture search with Bayesian optimisation and optimal transport. In: Conference in Neural Information Processing Systems (2018). https://papers.nips.cc/paper/7472-neural-architecture-search-with-bayesian-optimisation-and-optimal-transport.pdf
Horowitz, M.: 1.1 computing’s energy problem (and what we can do about it). In: 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 10–14, February 2014
Wong, B.L.: Essential Study Skills, 8th edn. Cengage, Boston (2015). ISBN 9781285430096
Inan, H., Khosravi, K., Socher, R.: Tying word vectors and word classifiers: a loss framework for language modeling. CoRR, vol. abs/1611.01462 (2016). http://arxiv.org/abs/1611.01462
Zilly, J.G., Srivastava, R.K., Koutník, J., Schmidhuber, J.: Recurrent highway networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, PMLR, 06–11 Augus 2017, vol. 70, pp. 4189–4198. International Convention Centre, Sydney (2017). http://proceedings.mlr.press/v70/zilly17a.html
Marcus, M., Kim, G., Marcinkiewicz, M.A., MacIntyre, R., Bies, A., Ferguson, M., Katz, K., Schasberger, B.: The penn treebank: annotating predicate argument structure. In: Proceedings of the Workshop on Human Language Technology, HLT 1994, pp. 114–119. Association for Computational Linguistics, Stroudsburg (1994). https://doi.org/10.3115/1075812.1075835
Li, L., Talwalkar, A.: Random search and reproducibility for neural architecture search. CoRR, vol. abs/1902.07638 (2019). http://arxiv.org/abs/1902.07638
Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. arXiv preprint arXiv:1806.09055 (2018)
Van Moffaert, K., Drugan, M.M., Nowé, A.: Hypervolume-based multi-objective reinforcement learning. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) Evolutionary Multi-Criterion Optimization, pp. 352–366. Springer, Heidelberg (2013)
Van Moffaert, K., Drugan, M.M., Now, A.: Scalarized multi-objective reinforcement learning: novel design techniques. In: 2013 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), pp. 191–199, April 2013
Cai, H., Zheng, V.W., Chang, K.C.-C.: A comprehensive survey of graph embedding: problems, techniques and applications. IEEE Trans. Knowl. Data Eng. 30, 1616–1637 (2017)
Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, pp. 701–710. ACM, New York (2014). https://doi.org/10.1145/2623330.2623732
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Cassimon, A., Vanneste, S., Bosmans, S., Mercelis, S., Hellinckx, P. (2020). Using Neural Architecture Search to Optimize Neural Networks for Embedded Devices. In: Barolli, L., Hellinckx, P., Natwichai, J. (eds) Advances on P2P, Parallel, Grid, Cloud and Internet Computing. 3PGCIC 2019. Lecture Notes in Networks and Systems, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-030-33509-0_64
Download citation
DOI: https://doi.org/10.1007/978-3-030-33509-0_64
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33508-3
Online ISBN: 978-3-030-33509-0
eBook Packages: EngineeringEngineering (R0)