Skip to main content

Using Neural Architecture Search to Optimize Neural Networks for Embedded Devices

  • Conference paper
  • First Online:
Advances on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC 2019)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 96))

  • 1711 Accesses

Abstract

Recent advances in the field of Neural Architecture Search (NAS) have made it possible to develop state-of-the-art deep learning systems without requiring extensive human expertise and hyperparameter tuning. In most previous research, little concern was given to the resources required to run the generated systems. In this paper, we present an improvement on a recent NAS method, Efficient Neural Architecture Search (ENAS). We adapt ENAS to not only take into account the network’s performance, but also various constraints that would allow these networks to be ported to embedded devices. Our results show ENAS’ ability to comply with these added constraints. In order to show the efficacy of our system, we demonstrate it by designing a Recurrent Neural Network (RNN) that predicts words as they are spoken, and meets the constraints set out for operation on an embedded device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning (2017). https://arxiv.org/abs/1611.01578

  2. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8, 229–256 (1992)

    Article  Google Scholar 

  3. Pham, H., Guan, M., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via parameters sharing (2018). http://proceedings.mlr.press/v80/pham18a/pham18a.pdf

  4. Elsken, T., Metzen, J.H., Hutter, F.: Efficient multi-objective neural architecture search via lamarckian evolution. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ByME42AqK7

  5. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. CoRR, vol. abs/1707.07012 (2017). http://arxiv.org/abs/1707.07012

  6. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. CoRR, vol. abs/1802.01548 (2018). http://arxiv.org/abs/1802.01548

  7. Kandasamy, K., Schneider, J., Pczos, B., Xing, E.P.: Neural architecture search with Bayesian optimisation and optimal transport. In: Conference in Neural Information Processing Systems (2018). https://papers.nips.cc/paper/7472-neural-architecture-search-with-bayesian-optimisation-and-optimal-transport.pdf

  8. Horowitz, M.: 1.1 computing’s energy problem (and what we can do about it). In: 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 10–14, February 2014

    Google Scholar 

  9. Wong, B.L.: Essential Study Skills, 8th edn. Cengage, Boston (2015). ISBN 9781285430096

    Google Scholar 

  10. Inan, H., Khosravi, K., Socher, R.: Tying word vectors and word classifiers: a loss framework for language modeling. CoRR, vol. abs/1611.01462 (2016). http://arxiv.org/abs/1611.01462

  11. Zilly, J.G., Srivastava, R.K., Koutník, J., Schmidhuber, J.: Recurrent highway networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, PMLR, 06–11 Augus 2017, vol. 70, pp. 4189–4198. International Convention Centre, Sydney (2017). http://proceedings.mlr.press/v70/zilly17a.html

  12. Marcus, M., Kim, G., Marcinkiewicz, M.A., MacIntyre, R., Bies, A., Ferguson, M., Katz, K., Schasberger, B.: The penn treebank: annotating predicate argument structure. In: Proceedings of the Workshop on Human Language Technology, HLT 1994, pp. 114–119. Association for Computational Linguistics, Stroudsburg (1994). https://doi.org/10.3115/1075812.1075835

  13. Li, L., Talwalkar, A.: Random search and reproducibility for neural architecture search. CoRR, vol. abs/1902.07638 (2019). http://arxiv.org/abs/1902.07638

  14. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. arXiv preprint arXiv:1806.09055 (2018)

  15. Van Moffaert, K., Drugan, M.M., Nowé, A.: Hypervolume-based multi-objective reinforcement learning. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) Evolutionary Multi-Criterion Optimization, pp. 352–366. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Van Moffaert, K., Drugan, M.M., Now, A.: Scalarized multi-objective reinforcement learning: novel design techniques. In: 2013 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), pp. 191–199, April 2013

    Google Scholar 

  17. Cai, H., Zheng, V.W., Chang, K.C.-C.: A comprehensive survey of graph embedding: problems, techniques and applications. IEEE Trans. Knowl. Data Eng. 30, 1616–1637 (2017)

    Article  Google Scholar 

  18. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, pp. 701–710. ACM, New York (2014). https://doi.org/10.1145/2623330.2623732

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amber Cassimon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cassimon, A., Vanneste, S., Bosmans, S., Mercelis, S., Hellinckx, P. (2020). Using Neural Architecture Search to Optimize Neural Networks for Embedded Devices. In: Barolli, L., Hellinckx, P., Natwichai, J. (eds) Advances on P2P, Parallel, Grid, Cloud and Internet Computing. 3PGCIC 2019. Lecture Notes in Networks and Systems, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-030-33509-0_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33509-0_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33508-3

  • Online ISBN: 978-3-030-33509-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics