Skip to main content

A Robust Fully Correntropy–Based Sparse Modeling Alternative to Dictionary Learning

  • Conference paper
  • First Online:
Advances on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC 2019)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 96))

  • 1473 Accesses

Abstract

Correntropy is a dependence measure that goes beyond Gaussian environments and optimizations based on Minimum Squared Error (MSE). Its ability to induce a metric that is fully modulated by a single parameter makes it an attractive tool for adaptive signal processing. We propose a sparse modeling framework based on the dictionary learning technique known as K–SVD where Correntropy replaces MSE in the sparse coding and dictionary update subroutines. The former yields a robust variant of Orthogonal Matching Pursuit while the latter exploits robust Singular Value Decompositions. The result is Correntropy–based dictionary learning. The data–driven nature of the approach combines two appealing features in unsupervised learning—robustness and sparseness—without adding hyperparameters to the framework. Robust recovery of bases in synthetic data and image denoising under impulsive noise confirm the advantages of the proposed techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aharon, M., Elad, M., Bruckstein, A., et al.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54(11), 4311 (2006)

    Article  Google Scholar 

  2. Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Selected Papers of Hirotugu Akaike, pp. 199–213. Springer (1998)

    Google Scholar 

  3. Andersen, R.: Modern Methods for Robust Regression, vol. 152. Sage (2008)

    Google Scholar 

  4. Barron, A., Rissanen, J., Yu, B.: The minimum description length principle in coding and modeling. IEEE Trans. Inf. Theor. 44(6), 2743–2760 (1998)

    Article  MathSciNet  Google Scholar 

  5. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theor. 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  6. Donoho, D.L., Johnstone, J.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)

    Article  MathSciNet  Google Scholar 

  7. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  8. He, R., Hu, B.G., Zheng, W.S., Kong, X.W.: Robust principal component analysis based on maximum correntropy criterion. IEEE Trans. Image Process. 20(6), 1485–1494 (2011)

    Article  MathSciNet  Google Scholar 

  9. Liu, W., Pokharel, P.P., Príncipe, J.C.: Correntropy: properties and applications in non-gaussian signal processing. IEEE Trans. Sig. Process. 55(11), 5286–5298 (2007)

    Article  MathSciNet  Google Scholar 

  10. Loza, C.A., Principe, J.C.: A robust maximum correntropy criterion for dictionary learning. In: 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2016)

    Google Scholar 

  11. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2272–2279. IEEE (2009)

    Google Scholar 

  12. Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE Trans. Image Process. 17(1), 53–69 (2008)

    Article  MathSciNet  Google Scholar 

  13. Mallat, S., Zhang, Z.: Matching pursuit with time-frequency dictionaries. Technical report, Courant Institute of Mathematical Sciences, New York, United States (1993)

    Google Scholar 

  14. Nikolova, M., Ng, M.K.: Analysis of half-quadratic minimization methods for signal and image recovery. SIAM J. Sci. Comput. 27(3), 937–966 (2005)

    Article  MathSciNet  Google Scholar 

  15. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607 (1996)

    Article  Google Scholar 

  16. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenom. 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  17. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Routledge (2018)

    Google Scholar 

  18. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. Series B (Methodol.) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theor. 53(12), 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

  20. Wang, Y., Tang, Y.Y., Li, L.: Correntropy matching pursuit with application to robust digit and face recognition. IEEE Trans. Cybern. 47(6), 1354–1366 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Loza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Loza, C.A. (2020). A Robust Fully Correntropy–Based Sparse Modeling Alternative to Dictionary Learning. In: Barolli, L., Hellinckx, P., Natwichai, J. (eds) Advances on P2P, Parallel, Grid, Cloud and Internet Computing. 3PGCIC 2019. Lecture Notes in Networks and Systems, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-030-33509-0_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33509-0_79

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33508-3

  • Online ISBN: 978-3-030-33509-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics