Skip to main content

A Framework for Preserving Location Privacy for Continuous Queries

  • Conference paper
  • First Online:
Emerging Trends in Intelligent Computing and Informatics (IRICT 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1073))

Abstract

The growth of the location-based services (LBSs) market in recent years was motivated by the widespread use of mobile devices equipped with positioning capability and Internet accessibility. To preserve the location privacy of LBS users, many mechanisms have been proposed to provide a partial disclosure by decreasing or blurring or the accuracy of the shared location. While these Location Privacy Preserving Mechanisms (LPPMs) have demonstrated effective performance with snapshot queries, this work shows that preserving location privacy for continuous queries should be addressed differently. In this paper, MOPROPLS framework is proposed with the aim to preserve location privacy in the specific case of continuous queries. As part of the proposed framework, a novel set of six requirements that any LPPM should meet in order to provide location privacy for continuous queries is proposed. In addition, a novel location privacy leakage metric and a novel two-phased probabilistic candidate selection algorithm are proposed. Comparing the performance of MOPROPLS framework with the geo-indistinguishability LPPM in terms of privacy (adversary estimation error) shows that the average of MOPROPLS framework improvement is 34%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Primault, V., Boutet, A., Mokhtar, S.B., Brunie, L.: The long road to computational location privacy: a survey. IEEE Commun. Surv. Tutorials. 1 (2018). https://doi.org/10.1109/COMST.2018.2873950

  2. Gupta, R., Rao, U.P.: An exploration to location based service and its privacy preserving techniques: a survey. Wirel. Pers. Commun. 96, 1973–2007 (2017). https://doi.org/10.1007/s11277-017-4284-2

    Article  Google Scholar 

  3. Talat, H., Nomani, T., Mohsin, M., Sattar, S.: A survey on location privacy techniques deployed in vehicular networks. In: 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp. 604–613. IEEE (2019). https://doi.org/10.1109/IBCAST.2019.8667248

  4. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through spatial and temporal cloaking. In: Proceedings of the 1st International Conference on Mobile Systems, Applications and Services - MobiSys 2003, pp. 31–42. ACM Press, New York (2003). https://doi.org/10.1145/1066116.1189037

  5. Mokbel, M.F., Chow, C.-Y., Aref, W.G.: The new Casper: query processing for location services without compromising privacy (2006). https://dl.acm.org/citation.cfm?id=1164193

  6. Gedik, B., Liu, L.: Protecting location privacy with personalized k-anonymity: architecture and algorithms. IEEE Trans. Mob. Comput. 7, 1–18 (2008). https://doi.org/10.1109/TMC.2007.1062

    Article  Google Scholar 

  7. Nguyen, N., Han, S., Shin, M.: URALP: unreachable region aware location privacy against maximum movement boundary attack. Int. J. Distrib. Sens. Netw. 11, 246216 (2015). https://doi.org/10.1155/2015/246216

    Article  Google Scholar 

  8. Lu, Q., Wang, C., Xiong, Y., Xia, H., Huang, W., Gong, X.: Personalized privacy-preserving trajectory data publishing. Chin. J. Electron. 26, 285–291 (2017)

    Article  Google Scholar 

  9. Ma, C., Zhou, C., Yang, S.: A voronoi-based location privacy-preserving method for continuous query in LBS. Int. J. Distrib. Sens. Netw. 11, 326953 (2015). https://doi.org/10.1155/2015/326953

    Article  Google Scholar 

  10. Wang, Y., Xia, Y., Hou, J., Gao, S., Nie, X., Wang, Q.: A fast privacy-preserving framework for continuous location-based queries in road networks. J. Netw. Comput. Appl. 53, 57–73 (2015). https://doi.org/10.1016/J.JNCA.2015.01.004

    Article  Google Scholar 

  11. Kido, H., Yanagisawa, Y., Satoh, T.: An anonymous communication technique using dummies for location-based services. In: Proceedings of International Conference on Pervasive Services, ICPS 2005, pp. 88–97. IEEE (2005). https://doi.org/10.1109/PERSER.2005.1506394

  12. Shankar, P., Ganapathy, V., Iftode, L.: Privately querying location-based services with SybilQuery. In: Proceedings of the 11th international conference on Ubiquitous computing - Ubicomp 2009, p. 31. ACM Press, New York (2009). https://doi.org/10.1145/1620545.1620550

  13. Gao, S., Ma, J., Shi, W., Zhan, G.: LTPPM: a location and trajectory privacy protection mechanism in participatory sensing. Wirel. Commun. Mob. Comput. 15, 155–169 (2015). https://doi.org/10.1002/wcm.2324

    Article  Google Scholar 

  14. Wei, W., Xu, F., Li, Q.: MobiShare: flexible privacy-preserving location sharing in mobile online social networks. In: 2012 Proceedings IEEE INFOCOM, pp. 2616–2620. IEEE (2012). https://doi.org/10.1109/INFCOM.2012.6195664

  15. Beresford, A.R., Stajano, F.: Location privacy in pervasive computing. IEEE Pervasive Comput. 2, 46–55 (2003). https://doi.org/10.1109/MPRV.2003.1186725

    Article  Google Scholar 

  16. Palanisamy, B., Liu, L.: MobiMix: protecting location privacy with mix-zones over road networks. In: 2011 IEEE 27th International Conference on Data Engineering, pp. 494–505. IEEE (2011). https://doi.org/10.1109/ICDE.2011.5767898

  17. Eckhoff, D., German, R., Sommer, C., Dressler, F., Gansen, T.: SlotSwap: strong and affordable location privacy in intelligent transportation systems. IEEE Commun. Mag. 49, 126–133 (2011). https://doi.org/10.1109/MCOM.2011.6069719

    Article  Google Scholar 

  18. Chen, Y.-S., Lo, T.-T., Lee, C.-H., Pang, A.-C.: Efficient pseudonym changing schemes for location privacy protection in VANETs. In: 2013 International Conference on Connected Vehicles and Expo (ICCVE), pp. 937–938. IEEE (2013). https://doi.org/10.1109/ICCVE.2013.6799933

  19. Domenic, M.K., Wang, Y., Zhang, F., Memon, I., Gustav, Y.H.: Preserving users’ privacy for continuous query services in road networks. In: 2013 6th International Conference on Information Management, Innovation Management and Industrial Engineering, pp. 352–355. IEEE (2013). https://doi.org/10.1109/ICIII.2013.6702947

  20. Sun, Y., Zhang, B., Zhao, B., Su, X., Su, J.: Mix-zones optimal deployment for protecting location privacy in VANET. Peer-to-Peer Netw. Appl. 8, 1108–1121 (2015). https://doi.org/10.1007/s12083-014-0269-z

    Article  Google Scholar 

  21. Boualouache, A., Moussaoui, S.: Urban pseudonym changing strategy for location privacy in VANETs. Int. J. Ad Hoc Ubiquitous Comput. 24, 49 (2017). https://doi.org/10.1504/IJAHUC.2017.080914

    Article  Google Scholar 

  22. Ullah, I., Wahid, A., Shah, M.A., Waheed, A.: VBPC: Velocity based pseudonym changing strategy to protect location privacy of vehicles in VANET. In: 2017 International Conference on Communication Technologies (ComTech), pp. 132–137. IEEE (2017). https://doi.org/10.1109/COMTECH.2017.8065762

  23. Palanisamy, B., Liu, L.: Attack-resilient mix-zones over road networks: architecture and algorithms. IEEE Trans. Mob. Comput. 14, 495–508 (2015). https://doi.org/10.1109/TMC.2014.2321747

    Article  Google Scholar 

  24. Mascetti, S., Freni, D., Bettini, C., Wang, X.S., Jajodia, S.: Privacy in geo-social networks: proximity notification with untrusted service providers and curious buddies. VLDB J. 20, 541–566 (2011). https://doi.org/10.1007/s00778-010-0213-7

    Article  Google Scholar 

  25. Shen, N., Yang, J., Yuan, K., Fu, C., Jia, C.: An efficient and privacy-preserving location sharing mechanism. Comput. Stand. Interfaces 44, 102–109 (2016). https://doi.org/10.1016/J.CSI.2015.06.001

    Article  Google Scholar 

  26. Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.-L.: Private queries in location based services: anonymizers are not necessary. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data - SIGMOD 2008, p. 121. ACM Press, New York (2008). https://doi.org/10.1145/1376616.1376631

  27. Paulet, R., Kaosar, M.G., Yi, X., Bertino, E.: Privacy-preserving and content-protecting location based queries. IEEE Trans. Knowl. Data Eng. 26, 1200–1210 (2014). https://doi.org/10.1109/TKDE.2013.87

  28. Gutscher, A.: Coordinate transformation - a solution for the privacy problem of location based services? In: Proceedings 20th IEEE International Parallel & Distributed Processing Symposium, p. 7. IEEE (2006). https://doi.org/10.1109/IPDPS.2006.1639681

  29. Yiu, M.L., Jensen, C.S., Møller, J., Lu, H.: Design and analysis of a ranking approach to private location-based services. ACM Trans. Database Syst. 36, 1–42 (2011). https://doi.org/10.1145/1966385.1966388

    Article  Google Scholar 

  30. Perazzo, P., Dini, G.: A uniformity-based approach to location privacy. Comput. Commun. 64, 21–32 (2015). https://doi.org/10.1016/J.COMCOM.2015.02.014

    Article  Google Scholar 

  31. Kachore, V.A., Lakshmi, J., Nandy, S.K.: Location obfuscation for location data privacy. In: 2015 IEEE World Congress on Services, pp. 213–220. IEEE (2015). https://doi.org/10.1109/SERVICES.2015.39

  32. Zurbaran, M.A., Avila, K., Wightman, P., Fernandez, M.: Near-rand: noise-based location obfuscation based on random neighboring points. IEEE Lat. Am. Trans. 13, 3661–3667 (2015). https://doi.org/10.1109/TLA.2015.7387946

    Article  Google Scholar 

  33. Shahid, A.R., Jeukeng, L., Zeng, W., Pissinou, N., Iyengar, S.S., Sahni, S., Varela-Conover, M.: PPVC: privacy preserving voronoi cell for location-based services. In: 2017 International Conference on Computing, Networking and Communications (ICNC), pp. 351–355. IEEE (2017). https://doi.org/10.1109/ICCNC.2017.7876153

  34. Schlegel, R., Chow, C.-Y., Huang, Q., Wong, D.S.: User-defined privacy grid system for continuous location-based services. IEEE Trans. Mob. Comput. 14, 2158–2172 (2015). https://doi.org/10.1109/TMC.2015.2388488

    Article  Google Scholar 

  35. Shokri, R., Theodorakopoulos, G., Troncoso, C., Hubaux, J.-P., Le Boudec, J.-Y.: Protecting location privacy: optimal strategy against localization attacks. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security - CCS 2012, p. 617. ACM Press, New York (2012). https://doi.org/10.1145/2382196.2382261

  36. Xiong, P., Zhu, T., Niu, W., Li, G.: A differentially private algorithm for location data release. Knowl. Inf. Syst. 47, 647–669 (2016). https://doi.org/10.1007/s10115-015-0856-1

    Article  Google Scholar 

  37. Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C., Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Geo-indistinguishability: differential privacy for location-based systems. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security - CCS 2013, pp. 901–914. ACM Press, New York (2013). https://doi.org/10.1145/2508859.2516735

  38. Chatzikokolakis, K., Palamidessi, C., Stronati, M.: Constructing elastic distinguishability metrics for location privacy. Proc. Priv. Enhancing Technol. 2015, 156–170 (2015). https://doi.org/10.1515/popets-2015-0023

    Article  MATH  Google Scholar 

  39. Al-Dhubhani, R., Cazalas, J.M.: An adaptive geo-indistinguishability mechanism for continuous LBS queries. Wirel. Netw. 1–19 (2017). https://doi.org/10.1007/s11276-017-1534-x

  40. Shokri, R., Theodorakopoulos, G., Le Boudec, J.-Y., Hubaux, J.-P.: Quantifying location privacy. In: 2011 IEEE Symposium on Security and Privacy, pp. 247–262. IEEE (2011). https://doi.org/10.1109/SP.2011.18

  41. Piorkowski, M., Sarafijanovic-Djukic, N., Grossglauser, M.: A parsimonious model of mobile partitioned networks with clustering. In: 2009 First International Communication Systems and Networks and Workshops, pp. 1–10. IEEE (2009). https://doi.org/10.1109/COMSNETS.2009.4808865

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raed Saeed Al-Dhubhani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al-Dhubhani, R.S., Cazalas, J., Mehmood, R., Katib, I., Saeed, F. (2020). A Framework for Preserving Location Privacy for Continuous Queries. In: Saeed, F., Mohammed, F., Gazem, N. (eds) Emerging Trends in Intelligent Computing and Informatics. IRICT 2019. Advances in Intelligent Systems and Computing, vol 1073. Springer, Cham. https://doi.org/10.1007/978-3-030-33582-3_77

Download citation

Publish with us

Policies and ethics