Abstract
The growth of the location-based services (LBSs) market in recent years was motivated by the widespread use of mobile devices equipped with positioning capability and Internet accessibility. To preserve the location privacy of LBS users, many mechanisms have been proposed to provide a partial disclosure by decreasing or blurring or the accuracy of the shared location. While these Location Privacy Preserving Mechanisms (LPPMs) have demonstrated effective performance with snapshot queries, this work shows that preserving location privacy for continuous queries should be addressed differently. In this paper, MOPROPLS framework is proposed with the aim to preserve location privacy in the specific case of continuous queries. As part of the proposed framework, a novel set of six requirements that any LPPM should meet in order to provide location privacy for continuous queries is proposed. In addition, a novel location privacy leakage metric and a novel two-phased probabilistic candidate selection algorithm are proposed. Comparing the performance of MOPROPLS framework with the geo-indistinguishability LPPM in terms of privacy (adversary estimation error) shows that the average of MOPROPLS framework improvement is 34%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Primault, V., Boutet, A., Mokhtar, S.B., Brunie, L.: The long road to computational location privacy: a survey. IEEE Commun. Surv. Tutorials. 1 (2018). https://doi.org/10.1109/COMST.2018.2873950
Gupta, R., Rao, U.P.: An exploration to location based service and its privacy preserving techniques: a survey. Wirel. Pers. Commun. 96, 1973–2007 (2017). https://doi.org/10.1007/s11277-017-4284-2
Talat, H., Nomani, T., Mohsin, M., Sattar, S.: A survey on location privacy techniques deployed in vehicular networks. In: 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp. 604–613. IEEE (2019). https://doi.org/10.1109/IBCAST.2019.8667248
Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through spatial and temporal cloaking. In: Proceedings of the 1st International Conference on Mobile Systems, Applications and Services - MobiSys 2003, pp. 31–42. ACM Press, New York (2003). https://doi.org/10.1145/1066116.1189037
Mokbel, M.F., Chow, C.-Y., Aref, W.G.: The new Casper: query processing for location services without compromising privacy (2006). https://dl.acm.org/citation.cfm?id=1164193
Gedik, B., Liu, L.: Protecting location privacy with personalized k-anonymity: architecture and algorithms. IEEE Trans. Mob. Comput. 7, 1–18 (2008). https://doi.org/10.1109/TMC.2007.1062
Nguyen, N., Han, S., Shin, M.: URALP: unreachable region aware location privacy against maximum movement boundary attack. Int. J. Distrib. Sens. Netw. 11, 246216 (2015). https://doi.org/10.1155/2015/246216
Lu, Q., Wang, C., Xiong, Y., Xia, H., Huang, W., Gong, X.: Personalized privacy-preserving trajectory data publishing. Chin. J. Electron. 26, 285–291 (2017)
Ma, C., Zhou, C., Yang, S.: A voronoi-based location privacy-preserving method for continuous query in LBS. Int. J. Distrib. Sens. Netw. 11, 326953 (2015). https://doi.org/10.1155/2015/326953
Wang, Y., Xia, Y., Hou, J., Gao, S., Nie, X., Wang, Q.: A fast privacy-preserving framework for continuous location-based queries in road networks. J. Netw. Comput. Appl. 53, 57–73 (2015). https://doi.org/10.1016/J.JNCA.2015.01.004
Kido, H., Yanagisawa, Y., Satoh, T.: An anonymous communication technique using dummies for location-based services. In: Proceedings of International Conference on Pervasive Services, ICPS 2005, pp. 88–97. IEEE (2005). https://doi.org/10.1109/PERSER.2005.1506394
Shankar, P., Ganapathy, V., Iftode, L.: Privately querying location-based services with SybilQuery. In: Proceedings of the 11th international conference on Ubiquitous computing - Ubicomp 2009, p. 31. ACM Press, New York (2009). https://doi.org/10.1145/1620545.1620550
Gao, S., Ma, J., Shi, W., Zhan, G.: LTPPM: a location and trajectory privacy protection mechanism in participatory sensing. Wirel. Commun. Mob. Comput. 15, 155–169 (2015). https://doi.org/10.1002/wcm.2324
Wei, W., Xu, F., Li, Q.: MobiShare: flexible privacy-preserving location sharing in mobile online social networks. In: 2012 Proceedings IEEE INFOCOM, pp. 2616–2620. IEEE (2012). https://doi.org/10.1109/INFCOM.2012.6195664
Beresford, A.R., Stajano, F.: Location privacy in pervasive computing. IEEE Pervasive Comput. 2, 46–55 (2003). https://doi.org/10.1109/MPRV.2003.1186725
Palanisamy, B., Liu, L.: MobiMix: protecting location privacy with mix-zones over road networks. In: 2011 IEEE 27th International Conference on Data Engineering, pp. 494–505. IEEE (2011). https://doi.org/10.1109/ICDE.2011.5767898
Eckhoff, D., German, R., Sommer, C., Dressler, F., Gansen, T.: SlotSwap: strong and affordable location privacy in intelligent transportation systems. IEEE Commun. Mag. 49, 126–133 (2011). https://doi.org/10.1109/MCOM.2011.6069719
Chen, Y.-S., Lo, T.-T., Lee, C.-H., Pang, A.-C.: Efficient pseudonym changing schemes for location privacy protection in VANETs. In: 2013 International Conference on Connected Vehicles and Expo (ICCVE), pp. 937–938. IEEE (2013). https://doi.org/10.1109/ICCVE.2013.6799933
Domenic, M.K., Wang, Y., Zhang, F., Memon, I., Gustav, Y.H.: Preserving users’ privacy for continuous query services in road networks. In: 2013 6th International Conference on Information Management, Innovation Management and Industrial Engineering, pp. 352–355. IEEE (2013). https://doi.org/10.1109/ICIII.2013.6702947
Sun, Y., Zhang, B., Zhao, B., Su, X., Su, J.: Mix-zones optimal deployment for protecting location privacy in VANET. Peer-to-Peer Netw. Appl. 8, 1108–1121 (2015). https://doi.org/10.1007/s12083-014-0269-z
Boualouache, A., Moussaoui, S.: Urban pseudonym changing strategy for location privacy in VANETs. Int. J. Ad Hoc Ubiquitous Comput. 24, 49 (2017). https://doi.org/10.1504/IJAHUC.2017.080914
Ullah, I., Wahid, A., Shah, M.A., Waheed, A.: VBPC: Velocity based pseudonym changing strategy to protect location privacy of vehicles in VANET. In: 2017 International Conference on Communication Technologies (ComTech), pp. 132–137. IEEE (2017). https://doi.org/10.1109/COMTECH.2017.8065762
Palanisamy, B., Liu, L.: Attack-resilient mix-zones over road networks: architecture and algorithms. IEEE Trans. Mob. Comput. 14, 495–508 (2015). https://doi.org/10.1109/TMC.2014.2321747
Mascetti, S., Freni, D., Bettini, C., Wang, X.S., Jajodia, S.: Privacy in geo-social networks: proximity notification with untrusted service providers and curious buddies. VLDB J. 20, 541–566 (2011). https://doi.org/10.1007/s00778-010-0213-7
Shen, N., Yang, J., Yuan, K., Fu, C., Jia, C.: An efficient and privacy-preserving location sharing mechanism. Comput. Stand. Interfaces 44, 102–109 (2016). https://doi.org/10.1016/J.CSI.2015.06.001
Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.-L.: Private queries in location based services: anonymizers are not necessary. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data - SIGMOD 2008, p. 121. ACM Press, New York (2008). https://doi.org/10.1145/1376616.1376631
Paulet, R., Kaosar, M.G., Yi, X., Bertino, E.: Privacy-preserving and content-protecting location based queries. IEEE Trans. Knowl. Data Eng. 26, 1200–1210 (2014). https://doi.org/10.1109/TKDE.2013.87
Gutscher, A.: Coordinate transformation - a solution for the privacy problem of location based services? In: Proceedings 20th IEEE International Parallel & Distributed Processing Symposium, p. 7. IEEE (2006). https://doi.org/10.1109/IPDPS.2006.1639681
Yiu, M.L., Jensen, C.S., Møller, J., Lu, H.: Design and analysis of a ranking approach to private location-based services. ACM Trans. Database Syst. 36, 1–42 (2011). https://doi.org/10.1145/1966385.1966388
Perazzo, P., Dini, G.: A uniformity-based approach to location privacy. Comput. Commun. 64, 21–32 (2015). https://doi.org/10.1016/J.COMCOM.2015.02.014
Kachore, V.A., Lakshmi, J., Nandy, S.K.: Location obfuscation for location data privacy. In: 2015 IEEE World Congress on Services, pp. 213–220. IEEE (2015). https://doi.org/10.1109/SERVICES.2015.39
Zurbaran, M.A., Avila, K., Wightman, P., Fernandez, M.: Near-rand: noise-based location obfuscation based on random neighboring points. IEEE Lat. Am. Trans. 13, 3661–3667 (2015). https://doi.org/10.1109/TLA.2015.7387946
Shahid, A.R., Jeukeng, L., Zeng, W., Pissinou, N., Iyengar, S.S., Sahni, S., Varela-Conover, M.: PPVC: privacy preserving voronoi cell for location-based services. In: 2017 International Conference on Computing, Networking and Communications (ICNC), pp. 351–355. IEEE (2017). https://doi.org/10.1109/ICCNC.2017.7876153
Schlegel, R., Chow, C.-Y., Huang, Q., Wong, D.S.: User-defined privacy grid system for continuous location-based services. IEEE Trans. Mob. Comput. 14, 2158–2172 (2015). https://doi.org/10.1109/TMC.2015.2388488
Shokri, R., Theodorakopoulos, G., Troncoso, C., Hubaux, J.-P., Le Boudec, J.-Y.: Protecting location privacy: optimal strategy against localization attacks. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security - CCS 2012, p. 617. ACM Press, New York (2012). https://doi.org/10.1145/2382196.2382261
Xiong, P., Zhu, T., Niu, W., Li, G.: A differentially private algorithm for location data release. Knowl. Inf. Syst. 47, 647–669 (2016). https://doi.org/10.1007/s10115-015-0856-1
Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C., Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Geo-indistinguishability: differential privacy for location-based systems. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security - CCS 2013, pp. 901–914. ACM Press, New York (2013). https://doi.org/10.1145/2508859.2516735
Chatzikokolakis, K., Palamidessi, C., Stronati, M.: Constructing elastic distinguishability metrics for location privacy. Proc. Priv. Enhancing Technol. 2015, 156–170 (2015). https://doi.org/10.1515/popets-2015-0023
Al-Dhubhani, R., Cazalas, J.M.: An adaptive geo-indistinguishability mechanism for continuous LBS queries. Wirel. Netw. 1–19 (2017). https://doi.org/10.1007/s11276-017-1534-x
Shokri, R., Theodorakopoulos, G., Le Boudec, J.-Y., Hubaux, J.-P.: Quantifying location privacy. In: 2011 IEEE Symposium on Security and Privacy, pp. 247–262. IEEE (2011). https://doi.org/10.1109/SP.2011.18
Piorkowski, M., Sarafijanovic-Djukic, N., Grossglauser, M.: A parsimonious model of mobile partitioned networks with clustering. In: 2009 First International Communication Systems and Networks and Workshops, pp. 1–10. IEEE (2009). https://doi.org/10.1109/COMSNETS.2009.4808865
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Al-Dhubhani, R.S., Cazalas, J., Mehmood, R., Katib, I., Saeed, F. (2020). A Framework for Preserving Location Privacy for Continuous Queries. In: Saeed, F., Mohammed, F., Gazem, N. (eds) Emerging Trends in Intelligent Computing and Informatics. IRICT 2019. Advances in Intelligent Systems and Computing, vol 1073. Springer, Cham. https://doi.org/10.1007/978-3-030-33582-3_77
Download citation
DOI: https://doi.org/10.1007/978-3-030-33582-3_77
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33581-6
Online ISBN: 978-3-030-33582-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)