Skip to main content

Deep Learning and Sensor Fusion Methods for Studying Gait Changes Under Cognitive Load in Males and Females

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2019 (IDEAL 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11871))

Abstract

Human gait is the manner of walking in people. It is influenced by weight, age, health condition or the interaction with the surrounding environment. In this work, we study gait changes under cognitive load in healthy males and females, using machine learning methods. A deep learning model with multi-processing pipelining and back propagation techniques, is proposed for cognitive load gait analysis. The IMAGiMAT floor system enabling sensor fusion from plastic optical fiber (POF) elements, is utilized to record gait raw data on spatiotemporal ground reaction force (GRF). A deep parallel Convolutional Neural Network (CNN) is engineered for POF sensors fusion, and gait GRF classification. The Layer-Wise Relevance Propagation (LRP), is applied to reveal which gait events are relevant towards informing the parallel CNN prediction. The CNN differentiates between males and females with 95% weighted average precision, and cognitive load gait classification with 93% weighted average precision. These findings present a new hypothesis, whereas larger dataset holds promise for human activity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yogev, G., Hausdorff, J.M., Giladi, N.: The role of executive function and attention in gait. Official J. Mov. Disord. Soc. 23(3), 329–342 (2008)

    Google Scholar 

  2. Woollacott, M., Shumway-Cook, A.: Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 16(1), 1–14 (2002)

    Article  Google Scholar 

  3. Bertram, J.E.A., Ruina, A.: Multiple walking speed–frequency relations are predicted by constrained optimization. J. Theor. Biol. 209(4), 445–453 (2001)

    Article  Google Scholar 

  4. Holt, K.G., Jeng, S.F., Ratcliffe, R., Hamill, J.: Energetic cost and stability during human walking at the preferred stride frequency. J. Motor Behav. 27(2), 164–178 (1995)

    Article  Google Scholar 

  5. Selinger, J.C., O’Connor, S.M., Wong, J.D., Donelan, J.M.: Humans can continuously optimize energetic cost during walking. Curr. Biol. 25(18), 2452–2456 (2015)

    Article  Google Scholar 

  6. Adenzato, M., Brambilla, M., Manenti, R., et al.: Gender differences in cognitive theory of mind revealed by transcranial direct current stimulation on medial prefrontal cortex. Sci. Rep. 7(41219) (2017). https://doi.org/10.1038/srep41219

  7. Sherwin, B.B.: Estrogen and cognitive functioning in women. Endocr. Rev. 24(2), 133–151 (2003)

    Article  Google Scholar 

  8. Zaidi, Z.F.: Gender differences in human brain: a review. Open Anat. J. 2, 37–55 (2010)

    Article  Google Scholar 

  9. Bruening, D.A., Frimenko, R.E., Goodyear, C.D., Bowden, D.R., Fullenkamp, A.M.: Sex differences in whole body gait kinematics at preferred speeds. Gait Posture 41(2), 540–545 (2015)

    Article  Google Scholar 

  10. Laws, K.R., Irvine, K., Gale, T.M.: Sex differences in cognitive impairment in alzheimer’s disease. World J. Psychiatry 22(1), 54–65 (2016)

    Article  Google Scholar 

  11. McPherson, S., Back, C., Buckwalter, J.G., Cummings, J.L.: Gender-related cognitive deficits in alzheimer’s disease. Int. Psychogeriatr. 11(2), 117–122 (1999)

    Article  Google Scholar 

  12. Alharthi, A.S., Yunas, S.U., Ozanyan, K.B.: Deep learning for monitoring of human gait: a review. IEEE Sens. J. (2019). https://doi.org/10.1109/JSEN.2019.2928777

    Article  Google Scholar 

  13. Cantoral-Ceballos, J., et al.: Intelligent carpet system, based on photonic guided-path tomography, for gait and balance monitoring in home environments. IEEE Sens. J. 15(1), 279–289 (2015)

    Article  Google Scholar 

  14. Suutala, J., Fujinami, K., Röning, J.: Gaussian process person identifier based on simple floor sensors. In: Roggen, D., Lombriser, C., Tröster, G., Kortuem, G., Havinga, P. (eds.) EuroSSC 2008. LNCS, vol. 5279, pp. 55–68. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88793-5_5

    Chapter  Google Scholar 

  15. Yun, J., Woo, W., Ryu, J.: User identification using user’s walking pattern over the ubiFloorII. In: Hao, Y., et al. (eds.) CIS 2005. LNCS (LNAI), vol. 3801, pp. 949–956. Springer, Heidelberg (2005). https://doi.org/10.1007/11596448_141

    Chapter  Google Scholar 

  16. Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R.: Explaining nonlinear classification decisions with deep taylor decomposition. Pattern Recogn. 65, 211–222 (2017)

    Article  Google Scholar 

  17. Bharadhwaj, H.: Layer-wise relevance propagation for explainable deep learning based speech recognition. In: 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 168–174 (2018)

    Google Scholar 

  18. Maximilian, A., et al.: iNNvestigate neural networks (2018). https://github.com/albermax/innvestigate

  19. Isaac, E.R.H.P., Elias, S., Rajagopalan, S., Easwarakumar, K.S.: Multiview gait-based gender classification through pose-based voting. Pattern Recogn. Lett. 126, 41–50 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah S. Alharthi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alharthi, A.S., Ozanyan, K.B. (2019). Deep Learning and Sensor Fusion Methods for Studying Gait Changes Under Cognitive Load in Males and Females. In: Yin, H., Camacho, D., Tino, P., Tallón-Ballesteros, A., Menezes, R., Allmendinger, R. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2019. IDEAL 2019. Lecture Notes in Computer Science(), vol 11871. Springer, Cham. https://doi.org/10.1007/978-3-030-33607-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33607-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33606-6

  • Online ISBN: 978-3-030-33607-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics