Skip to main content

Active Dataset Generation for Meta-learning System Quality Improvement

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2019 (IDEAL 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11871))

Abstract

Meta-learning use meta-features to formally describe datasets and find possible dependencies of algorithm performance from them. But there is not enough of various datasets to fill a meta-feature space with acceptable density for future algorithm performance prediction. To solve this problem we can use active learning. But it is required ability to generate nontrivial datasets that can help to improve the quality of the meta-learning system. In this paper we experimentally compare several such approaches based on maximize diversity and Bayesian optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.openml.org.

References

  1. Abdrashitova, Y., Zabashta, A., Filchenkov, A.: Spanning of meta-feature space for travelling salesman problem. Procedia Comput. Sci. 136, 174–182 (2018)

    Article  Google Scholar 

  2. Barth, R., Ijsselmuiden, J., Hemming, J., Van Henten, E.J.: Data synthesis methods for semantic segmentation in agriculture: a capsicum annuum dataset. Comput. Electron. Agric. 144, 284–296 (2018)

    Article  Google Scholar 

  3. Brazdil, P.B., Soares, C., Da Costa, J.P.: Ranking learning algorithms: using IBL and meta-learning on accuracy and time results. Mach. Learn. 50(3), 251–277 (2003)

    Article  Google Scholar 

  4. Durillo, J.J., Nebro, A.J., Alba, E.: The jMetal framework for multi-objective optimization: design and architecture. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)

    Google Scholar 

  5. Feurer, M., Springenberg, J.T., Hutter, F.: Initializing Bayesian hyperparameter optimization via meta-learning. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  6. Filchenkov, A., Pendryak, A.: Datasets meta-feature description for recommending feature selection algorithm. In: 2015 Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT), pp. 11–18 (2015)

    Google Scholar 

  7. Giraud-Carrier, C.: Metalearning-a tutorial. In: Tutorial at the 7th international conference on Machine Learning and Applications (ICMLA), San Diego, California, USA (2008)

    Google Scholar 

  8. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  9. Mahalanobis, P.C.: On the generalized distance in statistics. Proc. Natl. Inst. Sci. (India) 2(1), 49–55 (1936)

    MathSciNet  MATH  Google Scholar 

  10. Muñoz, M.A., Smith-Miles, K.: Generating custom classification datasets by targeting the instance space. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2017, pp. 1582–1588. ACM, New York (2017)

    Google Scholar 

  11. Myers, G.: A dataset generator for whole genome shotgun sequencing. In: ISMB, pp. 202–210 (1999)

    Google Scholar 

  12. Quinlan, J.R.: Simplifying decision trees. Int. J. Man Mach. Stud. 27(3), 221–234 (1987)

    Article  Google Scholar 

  13. Reif, M., Shafait, F., Dengel, A.: Dataset generation for meta-learning. In: Poster and Demo Track of the 35th German Conference on Artificial Intelligence (KI-2012), pp. 69–73 (2012)

    Google Scholar 

  14. Settles, B.: Active Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, vol. 6, no. 1, pp. 1–114 (2012)

    Article  MathSciNet  Google Scholar 

  15. Van Rijn, J.N., et al.: OpenML: a collaborative science platform. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 645–649. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40994-3_46

    Chapter  Google Scholar 

  16. Vanschoren, J., Van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in machine learning. ACM SIGKDD Explor. Newsl. 15(2), 49–60 (2014)

    Article  Google Scholar 

  17. Wolpert, D.H.: The supervised learning no-free-lunch theorems. In: Roy, R., Köppen, M., Ovaska, S., Furuhashi, T., Hoffmann, F. (eds.) Soft Computing and Industry, pp. 25–42. Springer, London (2002). https://doi.org/10.1007/978-1-4471-0123-9_3

    Chapter  Google Scholar 

  18. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  19. Zabashta, A., Filchenkov, A.: NDSE: instance generation for classification by given meta-feature description. CEUR Workshop Proc. 1998, 102–104 (2017)

    Google Scholar 

Download references

Acknowledgments

The work on the dataset generation was supported by the Russian Science Foundation (Grant 17-71-30029). The work on the other results presented in the paper was supported by the RFBR (project number 19-37-90165) and by the Russian Ministry of Science and Higher Education by the State Task 2.8866.2017/8.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Zabashta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zabashta, A., Filchenkov, A. (2019). Active Dataset Generation for Meta-learning System Quality Improvement. In: Yin, H., Camacho, D., Tino, P., Tallón-Ballesteros, A., Menezes, R., Allmendinger, R. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2019. IDEAL 2019. Lecture Notes in Computer Science(), vol 11871. Springer, Cham. https://doi.org/10.1007/978-3-030-33607-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33607-3_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33606-6

  • Online ISBN: 978-3-030-33607-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics