Skip to main content

Meta-learning Based Evolutionary Clustering Algorithm

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2019 (IDEAL 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11871))

Abstract

In this work, we address the hard clustering problem. We present a new clustering algorithm based on evolutionary computation searching a best partition with respect to a given quality measure. We present 32 partition transformation that are used as mutation operators. The algorithm is a \((1+1)\) evolutionary strategy that selects a random mutation on each step from a subset of preselected mutation operators. Such selection is performed with a classifier trained to predict usefulness of each mutation for a given dataset. Comparison with state-of-the-art approach for automated clustering algorithm and hyperparameter selection shows the superiority of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This phenomenon is most likely related to properties of a specific CVI and can be further mitigated, e.g. by applying different initialization method or using a more complex mutation/evolutionary scheme.

  2. 2.

    Full collection of comparison boxplots can be found at https://bit.ly/2Zr3WwG.

References

  1. Ma, P.C., Chan, K.C., Yao, X., Chiu, D.K.: An evolutionary clustering algorithm for gene expression microarray data analysis. Trans. Evol. Comp. 10, 296–314 (2006)

    Article  Google Scholar 

  2. Punj, G., Stewart, D.W.: Cluster analysis in marketing research: review and suggestions for application. J. Mark. Res. 20(2), 134–148 (1983)

    Article  Google Scholar 

  3. Farseev, A., Samborskii, I., Filchenkov, A., Chua, T.-S.: Cross-domain recommendation via clustering on multi-layer graphs. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 195–204. ACM (2017)

    Google Scholar 

  4. Kleinberg, J.: An impossibility theorem for clustering. In: Proceedings of the 15th International Conference on Neural Information Processing Systems, NIPS 2002, pp. 463–470. MIT Press, Cambridge (2002)

    Google Scholar 

  5. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  7. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  8. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 2, 224–227 (1979)

    Article  Google Scholar 

  9. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.-Theory Methods 3(1), 1–27 (1974)

    Article  MathSciNet  Google Scholar 

  10. Moulavi, D., Jaskowiak, P.A., Campello, R.J.G.B., Zimek, A., Sander, J.: Density-based clustering validation, April 2014

    Google Scholar 

  11. Arbelaitz, O., Gurrutxaga, I., Muguerza, J., PéRez, J.M., Perona, I.N.: An extensive comparative study of cluster validity indices. Pattern Recogn. 46, 243–256 (2013)

    Article  Google Scholar 

  12. Hruschka, E.R., Campello, R.J.G.B., Freitas, A.A., De Carvalho, A.C.P.L.F.: A survey of evolutionary algorithms for clustering. Trans. Syst. Man Cyber. Part C 39, 133–155 (2009)

    Article  Google Scholar 

  13. Ferrari, D.G., de Castro, L.N.: Clustering algorithm selection by meta-learning systems. Inf. Sci. 301, 181–194 (2015)

    Article  Google Scholar 

  14. Muravyov, S., Filchenkov, S.: Meta-learning system for automated clustering. In: AutoML@ PKDD/ECML, pp. 99–101 (2017)

    Google Scholar 

  15. Shalamov, V., Filchenkov, A., Shalyto, A.: Heuristic and metaheuristic solutions of pickup and delivery problem for self-driving taxi routing. Evol. Syst. 10, 11 (2017)

    Google Scholar 

  16. Cole, R.: Clustering with genetic algorithms. Ph.D. thesis (1998)

    Google Scholar 

  17. Hruschka, E.R., Ebecken, N.F.F.: A genetic algorithm for cluster analysis. Intell. Data Anal. 7, 15–25 (2003)

    Article  Google Scholar 

  18. Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. Trans. Sys. Man Cyber. Part B 28, 301–315 (1998)

    Article  Google Scholar 

  19. Handl, J., Knowles, J.: An evolutionary approach to multiobjective clustering. Trans. Evol. Comp 11, 56–76 (2007)

    Article  Google Scholar 

  20. Muravyov, S., Antipov, D., Buzdalova, A., Filchenkov, A.: Efficient computation of fitness function for evolutionary clustering. MENDEL 25, 87–94 (2019)

    Article  Google Scholar 

  21. Pillay, N., Qu, R.: Hyper-Heuristics: Theory and Applications. Springer, Switzerland (2018). https://doi.org/10.1007/978-3-319-96514-7

    Book  Google Scholar 

  22. Woodward, J.R., Swan, J.: The automatic generation of mutation operators for genetic algorithms. In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 67–74. ACM (2012)

    Google Scholar 

  23. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: Openml: networked science in machine learning. SIGKDD Explor. 15(2), 49–60 (2013)

    Article  Google Scholar 

  24. Shalamov, V., Efimova, V., Muravyov, S., Filchenkov, A.: Reinforcement-based method for simultaneous clustering algorithm selection and its hyperparameters optimization. Procedia Comput. Sci. 136, 144–153 (2018)

    Article  Google Scholar 

  25. Hutter, F., Hoos, H., Leyton-Brown, H.: An evaluation of sequential model-based optimization for expensive blackbox functions. In: Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 1209–1216. ACM (2013)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Maxim Buzdalov for useful comments. The research was financially supported by The Russian Science Foundation, Agreement 17-71-30029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Muravyov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tomp, D., Muravyov, S., Filchenkov, A., Parfenov, V. (2019). Meta-learning Based Evolutionary Clustering Algorithm. In: Yin, H., Camacho, D., Tino, P., Tallón-Ballesteros, A., Menezes, R., Allmendinger, R. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2019. IDEAL 2019. Lecture Notes in Computer Science(), vol 11871. Springer, Cham. https://doi.org/10.1007/978-3-030-33607-3_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33607-3_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33606-6

  • Online ISBN: 978-3-030-33607-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics