Skip to main content

Nonlinear Causal Link Estimation Under Hidden Confounding with an Application to Time Series Anomaly Detection

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2019)

Abstract

Causality analysis represents one of the most important tasks when examining dynamical systems such as ecological time series. We propose to mitigate the problem of inferring nonlinear cause-effect dependencies in the presence of a hidden confounder by using deep learning with domain knowledge integration. Moreover, we suggest a time series anomaly detection approach using causal link intensity increase as an indicator of the anomaly. Our proposed method is based on the Causal Effect Variational Autoencoder (CEVAE) which we extend and apply to anomaly detection in time series. We evaluate our method on synthetic data having properties of ecological time series and compare to the vector autoregressive Granger causality (VAR-GC) baseline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barz, B., Rodner, E., Guanche, Y., Denzler, J.: Detecting regions of maximal divergence for spatio-temporal anomaly detection. IEEE Trans. Pattern Anal. Mach. Intell. 41, 1088–1101 (2019)

    Article  Google Scholar 

  2. Cardoso Pereira, J.P.: Unsupervised anomaly detection in time series data using deep learning. Master’s thesis, Instituto Superior Tecnico Lisboa (2018)

    Google Scholar 

  3. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv:1511.07289 [cs.LG] (2016)

  4. Eichler, M.: Causal Inference in Time Series Analysis. Wiley Series in Probability and Statistics, pp. 327–354. Wiley, United States (2012). https://doi.org/10.1002/9781119945710.ch22

  5. Fabius, O., van Amersfoort, J.R.: Variational recurrent auto-encoders. arXiv:1412.6581v6 [stat.ML] (2014)

  6. Geweke, J.: Measurement of linear dependence and feedback between multiple time series. J. Am. Stat. Assoc. 77, 304–313 (1982)

    Article  MathSciNet  Google Scholar 

  7. Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica J. Econometric Soc. 37(3), 424–438 (1969)

    Article  Google Scholar 

  8. Kingma, D.P., Adam, J.B.: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  9. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: Proceedings of the 2nd International Conference on Learning Representations (ICLR), arXiv: 1312.6114 [stat. ML] (2014)

  10. Kipf, T., Fetaya, E., Wang, K.C., Welling, M., Zemel, R.: Neural relational inference for interacting systems. In: Internvational Conference on Machine Learning 2018 (ICML), arXiv:1802.04687v2 [stat.ML] (2018)

  11. Kretschmer, M., Coumou, D., Donges, J.F., Runge, J.: Using causal effect networks to analyze different arctic drivers of midlatitude winter circulation. J. Climate 29, 4069–4081 (2016)

    Article  Google Scholar 

  12. Li, L., Kleinman, K., Gillman, M.W.: A comparison of confounding adjustment methods with an application to early life determinants of childhood obesity. J. Dev. Orig. Health Dis. 5(6), 435–447 (2014)

    Article  Google Scholar 

  13. Louizos, C., Shalit, U., Mooij, J., Sontag, D., Z., R., Welling, M.: Causal effect inference with deep latent-variable models. In: Advances in Neural Information Processing Systems, vol. 30, pp. 6446–6456 (2017)

    Google Scholar 

  14. Miao, W., Geng, Z., Tchetgen Tchetgen, E.: Identifying causal effects with proxy variables of an unmeasured confounder. In: arXiv preprint arXiv:1609.08816 (2016)

  15. Pearl, J.: Causality. Cambridge University Press, New York (2009)

    Book  Google Scholar 

  16. Qiu, H., Liu, Y., Subrahmanya, N.A., Li, W.: Granger causality for time-series anomaly detection. In: 2012 IEEE 12th International Conference on Data Mining, pp. 1074–1079, December 2012. https://doi.org/10.1109/ICDM.2012.73

  17. Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N.: Prabhat: deep learning and process understanding for data-driven earth system science. Nature 566, 195–204 (2019)

    Article  Google Scholar 

  18. Runge, J.: Causal network reconstruction from time series: from theoretical assumptions to practical estimation. Chaos Interdisc. J. Nonlinear Sci. 28(7), 075310 (2018)

    Article  MathSciNet  Google Scholar 

  19. Shadaydeh, M., Denzler, J., Guanche, Y., Mahecha, M.: Time-frequency causal inference uncovers anomalous events in environmental systems. In: GCPR (2019)

    Google Scholar 

  20. Shadaydeh, M., Guanche, Y., Mahecha, M., Denzler, J.: BACI deliverable 5.4: methods for attribution scheme and near real-time BACI. Technical report (2018). http://baci-h2020.eu/index.php/Outreach/Deliverables

  21. Shadaydeh, M., Guanche, Y., Mahecha, M., Reichstein, M., Denzler, J.: Causality analysis of ecological time series: a time-frequency approach. In: Climate Informatics Workshop 2018 (2018)

    Google Scholar 

  22. Shalit, U., Johansson, F., Sontag, D.: Estimating individual treatment effect: generalization bounds and algorithms. In: arXiv:1606.03976v5 [stat.ML] (2016)

  23. Simpson, E.H.: The interpretation of interaction in contingency tables, pp. 238–241, No. 13 in B (1951)

    Google Scholar 

  24. Stips, A., Macias, D., Coughlan, C., Gracia-Gorriz, E., Liang, X.S.: On the causal structure between \(co_{2}\) and global temperature. Sci. Rep. 6(21691) (2016). https://doi.org/10.1038/srep21691

  25. Villani, C.: The wasserstein distances. Optimal Transport. Grundlehren der mathematischen Wissenschaften (A Series of Comprehensive Studies in Mathematics), vol. 338, pp. 93–111. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-71050-9_6

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Violeta Teodora Trifunov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trifunov, V.T., Shadaydeh, M., Runge, J., Eyring, V., Reichstein, M., Denzler, J. (2019). Nonlinear Causal Link Estimation Under Hidden Confounding with an Application to Time Series Anomaly Detection. In: Fink, G., Frintrop, S., Jiang, X. (eds) Pattern Recognition. DAGM GCPR 2019. Lecture Notes in Computer Science(), vol 11824. Springer, Cham. https://doi.org/10.1007/978-3-030-33676-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33676-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33675-2

  • Online ISBN: 978-3-030-33676-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics