Skip to main content

2D and 3D Segmentation of Uncertain Local Collagen Fiber Orientations in SHG Microscopy

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2019)

Abstract

Collagen fiber orientations in bones, visible with Second Harmonic Generation (SHG) microscopy, represent the inner structure and its alteration due to influences like cancer. While analyses of these orientations are valuable for medical research, it is not feasible to analyze the needed large amounts of local orientations manually. Since we have uncertain borders for these local orientations only rough regions can be segmented instead of a pixel-wise segmentation. We analyze the effect of these uncertain borders on human performance by a user study. Furthermore, we compare a variety of 2D and 3D methods such as classical approaches like Fourier analysis with state-of-the-art deep neural networks for the classification of local fiber orientations. We present a general way to use pretrained 2D weights in 3D neural networks, such as Inception-ResNet-3D a 3D extension of Inception-ResNet-v2. In a 10 fold cross-validation our two stage segmentation based on Inception-ResNet-3D and transferred 2D ImageNet weights achieves a human comparable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/Emprime/uncertain-fiber-segmentation.

  2. 2.

    Values are based on the reference implementation in Keras.

  3. 3.

    Molecular Imaging North Competence Center.

References

  1. Ambekar, R., Chittenden, M., Jasiuk, I., Toussaint, K.C.: Quantitative second-harmonic generation microscopy for imaging porcine cortical bone: comparison to sem and its potential to investigate age-related changes. Bone 50(3), 643–650 (2012)

    Article  Google Scholar 

  2. Campagnola, P.J., Loew, L.M.: Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat. Biotechnol. 21, 1356–1360 (2003)

    Article  Google Scholar 

  3. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016, Part II. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  4. Genant, H., Engelke, K., Prevrhal, S.: Advanced CT bone imaging in osteoporosis. Rheumatology 47(Suppl. 4), iv9–iv16 (2008)

    Google Scholar 

  5. Genthial, R., et al.: Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy. Sci. Rep. 7(1), 3419 (2017)

    Article  Google Scholar 

  6. Hassani, B., Mahoor, M.H.: Facial expression recognition using enhanced deep 3D convolutional neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2278–2288 (2017)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  8. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017)

    Google Scholar 

  9. Kang, G., Liu, K., Hou, B., Zhang, N.: 3D multi-view convolutional neural networks for lung nodule classification. PloS ONE 12(11), e0188290 (2017)

    Article  Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2012)

    Article  Google Scholar 

  11. Lau, T.Y., Ambekar, R., Toussaint, K.C.: Quantification of collagen fiber organization using three-dimensional fourier transform-second-harmonic generation imaging. Opt. Exp. 20(19), 21821–21832 (2012)

    Article  Google Scholar 

  12. Liang, L., Liu, M., Sun, W.: A deep learning approach to estimate chemically-treated collagenous tissue nonlinear anisotropic stress-strain responses from microscopy images. Acta Biomater. 63, 227–235 (2017)

    Article  Google Scholar 

  13. Lin, T.Y., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2999–3007 (2017)

    Google Scholar 

  14. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 77–85 (2017)

    Google Scholar 

  15. Rao, R.A.R., Mehta, M.R., Toussaint, K.C.: Fourier transform-second-harmonic generation imaging of biological tissues. Opt. Exp. 17(17), 14534–14542 (2009)

    Article  Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Rueckel, J., Stockmar, M.K., Pfeiffer, F., Herzen, J.: Spatial resolution characterization of a X-ray microCT system. Appl. Radiat. Isot. 94, 230–234 (2014)

    Article  Google Scholar 

  18. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  19. Shan, H., et al.: 3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network. IEEE Trans. Med. Imaging 37, 1522–1534 (2018)

    Article  Google Scholar 

  20. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)

    Google Scholar 

  21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2015)

    Google Scholar 

  22. Sivaguru, M., et al.: Quantitative analysis of collagen fiber organization in injured tendons using fourier transform-second harmonic generation imaging. Opt. Exp. 18(24), 24983–24993 (2010)

    Article  Google Scholar 

  23. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  24. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

    Google Scholar 

  25. Thomas, B., et al.: Second-harmonic generation imaging of collagen in ancient bone. Bone Rep. 7, 137–144 (2017)

    Article  Google Scholar 

  26. Zhou, X., et al.: Performance evaluation of 2D and 3D deep learning approaches for automatic segmentation of multiple organs on CT images. In: Medical Imaging 2018: Computer-Aided Diagnosis, vol. 10575, p. 105752C. International Society for Optics and Photonics (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Schmarje .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 37466 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schmarje, L., Zelenka, C., Geisen, U., Glüer, CC., Koch, R. (2019). 2D and 3D Segmentation of Uncertain Local Collagen Fiber Orientations in SHG Microscopy. In: Fink, G., Frintrop, S., Jiang, X. (eds) Pattern Recognition. DAGM GCPR 2019. Lecture Notes in Computer Science(), vol 11824. Springer, Cham. https://doi.org/10.1007/978-3-030-33676-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33676-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33675-2

  • Online ISBN: 978-3-030-33676-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics