Skip to main content

Applied Aspects of Implementation of Intelligent Information Technology for Fraud Detection During Mobile Applications Installation

  • Conference paper
  • First Online:
Advances in Intelligent Systems and Computing IV (CSIT 2019)

Abstract

The intelligent information technology for fraud detection during mobile applications installation is proposed in this paper. The structure of such intelligent information technology of fraud detection is offered in accordance with the tasks which should be solved by it: subsystem for available data analysis; subsystem for intellectual processing of available data; subsystem for developing a database and knowledge base (for detecting fraudsters); classification model building and user classification subsystem; subsystem for users’ templates formation; subsystem for the generalized fraudsters fingerprint formation. The proposed intelligent information technology allows the processing of various input data, which in the process gives the opportunity to form a generalized template of fraudster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Melnykova, N.: The basic approaches to automation of management by enterprise finances. In: 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), Lviv, pp. 288–291 (2017). https://doi.org/10.1109/stc-csit.2017.8098788

  2. Yarovyi, A., Polhul, T., Krylyk, L.: Rozrobka metodu vyiavlennia shakhraistva pry instaliuvanni mobilnykh dodatkiv z vykorystanniam intelektualnoho analizu danykh. In: Materialy konferentsiyi XLVII Naukovo-tekhnichna konferentsiya pidrozdiliv Vinnytskoho natsionalnoho tekhnichnoho universytetu, Vinnytsia (2018). http://ir.lib.vntu.edu.ua/bitstream/handle/123456789/22722/079.pdf?sequence=1

  3. Our take on mobile fraud detection. http://geeks.jampp.com/data-science/mobile-fraud/

  4. Dave, V., Guha, S., Zhang, Y.: ViceROI: Catching Click-Spam in Search Ad Networks. http://www.sysnet.ucsd.edu/~vacha/ccs13.pdf

  5. Dave, V., Guha, S., Zhang, Y.: Measuring and fingerprinting click-spam in ad networks. In: Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication (SIGCOMM), Helsinki, Finland, pp. 175–186, August 2012

    Google Scholar 

  6. Yarovyi, A.A., Romanyuk, O.N., Arsenyuk, I.R., Polhul, T.D.: Program applications install fraud detection using data mining. Naukovi pratsi Donetskoho natsionalnoho tekhnichnoho universytetu. Seriya: “Informatyka, kibernetyka ta obchysliuvalna tekhnika”, issue 2(25), pp. 126–131 (2017). http://science.donntu.edu.ua/wp-content/uploads/2018/03/ikvt_2017_2_site-1.pdf

  7. Polhul, T.D., Yarovyi, A.A.: Vyznachennia shakhraiskykh operatsiy pry vstanovlenni mobilnykh dodatkiv z vykorystanniam intelektualnoho analizu danykh. Suchasni tendentsiyi rozvytku systemnoho prohramuvannia. Tezy dopovidei, Kyiv, pp. 55–56 (2016). http://ccs.nau.edu.ua/wp-content/uploads/2017/12/%D0%A1%D0%A2%D0%A0%D0%A1%D0%9F_2016_07.pdf

  8. Polhul, T.D., Yarovyi, A.A.: Vyznachennia shakhraiskykh operatsiy pry instaliatsiyi mobilnykh dodatkiv z vykorystanniam intelektualnoho analizu danykh. Materialy XLVI naukovo-tekhnichnoi konferentsiyi pidrozdiliv VNTU, Vinnytsia (2017)

    Google Scholar 

  9. Kochava Uncovers Global Ad Fraud Scam. https://www.kochava.com/

  10. TMC Attribution Analytics. https://help.tune.com/marketing-console/attribution-analytics/

  11. Fraudlogix: Ad Fraud Solutions for Exchanges, Networks, SSPs & DSPs. https://www.fraudlogix.com/

  12. Kraken Antibot. http://kraken.run/

  13. AppsFlyer: Measure In-App To Grow Your Mobile Business. https://www.appsflyer.com/

  14. Adjust. https://www.adjust.com/

  15. FraudScore: FraudScore fights ad fraud using Machine Learning. https://fraudscore.mobi/

  16. AppMetrica. https://appmetrica.yandex.ru/

  17. Polhul, T., Yarovyi, A.: The input data heterogeneities resolution method during mobile applications installation fraud detection. Visnyk SNU named after V. Dal’ – Severodonetsk: SNU named after V. Dal’, â„– 7(248), pp. 60–69 (2018)

    Google Scholar 

  18. Polhul, T.: Development of an intelligent system for detecting mobile app install fraud. In: Proceedings of the IRES 156th International Conference, Bangkok, Thailand, 21–22 March, 2019, pp. 25–29

    Google Scholar 

  19. Polhul, T.D., Yarovyi, A.A.: Heterogeneous data analysis in intelligent fraud detection systems, № 2, pp. 78–90. Visnyk of Vinnutsia Polytechnic Institute, April 2019. https://doi.org/10.31649/1997-9266-2019-143-2-78-90

  20. Polhul, T., Yarovyi, A.: Development of a method for fraud detection in heterogeneous data during installation of mobile applications. East. Eur. J. Enterp. Technol. 1/2(97) (2019). https://doi.org/10.15587/1729-4061.2019.155060

  21. Segaran, T.: Programming Collective Intelligence. Building Smart Web 2.0 Applications. O’Reilly Media, Newton (2008). 368 p.

    Google Scholar 

  22. Kiulian, A.H., Polhul, T.D., Khazin, M.B.: Matematychna model rekomendatsiynoho servisu na osnovi metodu kolaboratyvnoi filtratsiyi. In: Kompiuterni tekhnolohiyi ta Internet v informatsiynomu suspilstvi, pp. 226–227 (2012). http://ir.lib.vntu.edu.ua/bitstream/handle/123456789/7911/226-227.pdf?sequence=1&isAllowed=y

  23. Guido, S., Müller, A.: Introduction to Machine Learning with Python: A Guide for Data Scientists. O’Reilly Media, Newton (2016). 400 p.

    Google Scholar 

  24. Yarovyi, A., Ilchenko, R., Arseniuk, I., Shemet, Y., Kotyra, A., Smailova, S.: An intelligent system of neural networking recognition of multicolor spot images of laser beam profile. In: Proceedings of SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, vol. 108081, October 2018. https://doi.org/10.1117/12.2501691

  25. Géron, A.: Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. Aurélien Géron, O’Reilly Media, Newton (2017). 574 p.

    Google Scholar 

  26. Dong, X., Qiu, P., LĂĽ, J., Cao, L., Xu, T.: Mining top-k useful negative sequential patterns via learning. IEEE Trans. Neural Netw. Learn. Syst. https://doi.org/10.1109/tnnls.2018.2886199

  27. Kozhemyako, V., Timchenko, L., Yarovyy, A.: Methodological principles of pyramidal and parallel-hierarchical image processing on the base of neural-like network systems. Adv. Electr. Comput. Eng. 8(2), 54–60 (2008). https://doi.org/10.4316/aece.2008.02010

  28. Granik, M., Mesyura, V., Yarovyi, A.: Determining fake statements made by public figures by means of artificial intelligence. In: IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), Lviv, pp. 424–427 (2018). https://doi.org/10.1109/stc-csit.2018.8526631

  29. Polhul, T.D.: Information technology for the construction of intelligent systems for detecting fraud during mobile applications installation. Information Technologies and Computing Engineering, vol. 44, № 1, pp. 4–16, May 2019. https://doi.org/10.31649/1999-9941-2019-44-1-4-16

  30. Cielen, D., Meysman, A.D.B., Ali, M.: Introducing Data Science: Big Data, Machine Learning, and More, Using Python Tools. Manning, New york (2016). 320 p.

    Google Scholar 

  31. Yarovyi, A.A., Polhul, T.D.: Kompiuterna prohrama “Prohramnyi modul zboru danykh informatsiynoi tekhnolohiyi” vyiavlennia shakhraistva pry instaliuvanni prohramnykh dodatkiv. Cvidotstvo pro reiestratsiu avtorskoho prava na tvir No. 76348. Ministerstvo ekonomichnoho rozvytku i torhivli Ukrainy, Kyiv (2018)

    Google Scholar 

  32. Yarovyi, A.A., Polhul, T.D.: Kompiuterna prohrama “Prohramnyi modul vyznachennia skhozhosti korystuvachiv informatsiynoi tekhnolohiyi vyiavlennia shakhraistva pry instaliuvanni prohramnykh dodatkiv”. Cvidotstvo pro reiestratsiu avtorskoho prava na tvir No. 76347. Ministerstvo ekonomichnoho rozvytku i torhivli Ukrainy, Kyiv (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetiana Polhul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yarovyi, A., Polhul, T. (2020). Applied Aspects of Implementation of Intelligent Information Technology for Fraud Detection During Mobile Applications Installation. In: Shakhovska, N., Medykovskyy, M.O. (eds) Advances in Intelligent Systems and Computing IV. CSIT 2019. Advances in Intelligent Systems and Computing, vol 1080. Springer, Cham. https://doi.org/10.1007/978-3-030-33695-0_26

Download citation

Publish with us

Policies and ethics