Abstract
IT support services industry is going through a major transformation with AI becoming commonplace. There has been a lot of effort in the direction of automation at every human touchpoint in the IT support processes. Incident management is one such process which has been a beacon process for AI based automation. The vision is to automate the process from the time an incident/ticket arrives till it is resolved and closed. While text is the primary mode of communicating the incidents, there has been a growing trend of using alternate modalities like image to communicate the problem. A large fraction of IT support tickets today contain attached image data in the form of screenshots, log messages, invoices and so on. These attachments help in better explanation of the problem which aids in faster resolution. Anybody who aspires to provide AI based IT support, it is essential to build systems which can handle multi-modal content.
In this paper we present how incident management in IT support domain can be made much more effective using multi-modal analysis. The information extracted from different modalities are correlated to enrich the information in the ticket and used for better ticket routing and resolution. We evaluate our system using about 25000 real tickets containing attachments from selected problem areas. Our results demonstrate significant improvements in both routing and resolution with the use of multi-modal ticket analysis compared to only text based analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, S., Aggarwal, V., Akula, A.R., Dasgupta, G.B., Sridhara, G.: Automatic problem extraction and analysis from unstructured text in IT tickets. IBM J. Res. Dev. 61(1), 4:41–4:52 (2017)
Agarwal, S., Sindhgatta, R., Sengupta, B.: SmartDispatch: enabling efficient ticket dispatch in an IT service environment. In: 18th ACM SIGKDD (2012)
Aggarwal, V., Agarwal, S., Dasgupta, G.B., Sridhara, G., Vijay, E.: ReAct: a system for recommending actions for rapid resolution of IT service incidents. In: IEEE International Conference on Services Computing, SCC 2016 (2016)
Botezatu, M.M., Bogojeska, J., Giurgiu, I., Voelzer, H., Wiesmann, D.: Multi-view incident ticket clustering for optimal ticket dispatching. In: 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2015, pp. 1711–1720 (2015)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)
Dasgupta, G.B., Nayak, T.K., Akula, A.R., Agarwal, S., Nadgowda, S.J.: Towards auto-remediation in services delivery: context-based classification of noisy and unstructured tickets. In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 478–485. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45391-9_39
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR09 (2009)
Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)
Gupta, A., Ray, A., Dasgupta, G., Singh, G., Aggarwal, P., Mohapatra, P.: Semantic parsing for technical support questions. In: COLING, Santa Fe, New Mexico, USA, August 2018
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Maire, M.R.: Contour detection and image segmentation. Ph.D. thesis (2009)
Mandal, A., Malhotra, N., Agarwal, S., Ray, A., Sridhara, G.: Cognitive system to achieve human-level accuracy in automated assignment of helpdesk email tickets. ArXiv e-prints, August 2018
Mandal, A., Malhotra, N., Agarwal, S., Ray, A., Sridhara, G.: Cognitive system to achieve human-level accuracy in automated assignment of helpdesk email tickets. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 332–341. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03596-9_23
Mani, S., et al.: Hi, how can I help you? automating enterprise IT support help desks. CoRR abs/1711.02012 (2017). http://arxiv.org/abs/1711.02012
Mori, S., Nishida, H., Yamada, H.: Optical Character Recognition. Wiley, New York (1999)
Sampat, A., Haskell, A.: CNN for task classification using computer screenshots for integration into dynamic calendar/task management systems. http://cs231n.stanford.edu/reports/2015/pdfs/anand_avery_final.pdf
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)
Smith, L.: Cyclical Learning Rates for Training Neural Networks, pp. 464–472, March 2017
Xu, J., Callan, J.: Effective retrieval with distributed collections. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1998, pp. 112–120. ACM (1998)
Zhou, W., Tang, L., Zeng, C., Li, T., Shwartz, L., Ya. Grabarnik, G.: Resolution recommendation for event tickets in service management. IEEE Trans. Netw. Serv. Manage. 13(4), 954–967 (2016)
Zhou, W., et al.: Star: a system for ticket analysis and resolution. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2017, pp. 2181–2190 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Mandal, A., Agarwal, S., Malhotra, N., Sridhara, G., Ray, A., Swarup, D. (2019). Improving IT Support by Enhancing Incident Management Process with Multi-modal Analysis. In: Yangui, S., Bouassida Rodriguez, I., Drira, K., Tari, Z. (eds) Service-Oriented Computing. ICSOC 2019. Lecture Notes in Computer Science(), vol 11895. Springer, Cham. https://doi.org/10.1007/978-3-030-33702-5_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-33702-5_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33701-8
Online ISBN: 978-3-030-33702-5
eBook Packages: Computer ScienceComputer Science (R0)