Abstract
The paper presents a detailed study of surface material recognition dependence on the illumination and viewing conditions which is a hard challenge in a realistic scene interpretation. The results document sharp classification accuracy decrease when using usual texture recognition approach, i.e., small learning set size and the vertical viewing and illumination angle which is a very inadequate representation of the enormous material appearance variability. The visual appearance of materials is considered in the state-of-the-art Bidirectional Texture Function (BTF) representation and measured using the upper-end BTF gonioreflectometer. The materials in this study are sixty-five different wood species. The supervised material recognition uses the shallow convolutional neural network (CNN) for the error analysis of angular dependency. We propose a Gaussian mixture model-based method for robust material segmentation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
TensorFlow. Technical report, Google AI. http://www.tensorflow.org/
Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real world surfaces. Technical report CUCS-048-96, Columbia University, December 1996
Dana, K.J., Nayar, S.K., van Ginneken, B., Koenderink, J.J.: Reflectance and texture of real-world surfaces. In: CVPR, pp. 151–157. IEEE Computer Society (1997)
Haindl, M., Mikeš, S.: Unsupervised texture segmentation using multispectral modelling approach. In: Tang, Y., Wang, S., Yeung, D., Yan, H., Lorette, G. (eds.) Proceedings of the 18th International Conference on Pattern Recognition, ICPR 2006, vol. II, pp. 203–206. IEEE Computer Society, Los Alamitos, August 2006
Haindl, M., Mikeš, S.: Texture segmentation benchmark. In: Lovell, B., Laurendeau, D., Duin, R. (eds.) Proceedings of the 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4. IEEE Computer Society, Los Alamitos, December 2008
Haindl, M., Filip, J.: Visual Texture. ACVPR. Springer, London (2013). https://doi.org/10.1007/978-1-4471-4902-6
Haindl, M., Mikeš, S.: A competition in unsupervised color image segmentation. Pattern Recogn. 57(9), 136–151 (2016)
Haindl, M., Mikeš, S., Kudo, M.: Unsupervised surface reflectance field multi-segmenter. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9256, pp. 261–273. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23192-1_22
Hayman, E., Caputo, B., Fritz, M., Eklundh, J.-O.: On the significance of real-world conditions for material classification. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 253–266. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_21
Jehle, M., Sommer, C., Jähne, B.: Learning of optimal illumination for material classification. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS, vol. 6376, pp. 563–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15986-2_57
Kampouris, C., Zafeiriou, S., Ghosh, A., Malassiotis, S.: Fine-grained material classification using micro-geometry and reflectance. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 778–792. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_47
Koudelka, M.L., Magda, S., Belhumeur, P.N., Kriegman, D.J.: Acquisition, compression, and synthesis of bidirectional texture functions. In: Texture 2003: Third International Workshop on Texture Analysis and Synthesis, Nice, France, pp. 59–64, October 2003
Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s thesis, University of Toronto, Canada (2009)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Liu, C., Gu, J.: Discriminative illumination: per-pixel classification of raw materials based on optimal projections of spectral BRDF. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 86–98 (2014)
Liu, C., Yang, G., Gu, J.: Learning discriminative illumination and filters for raw material classification with optimal projections of bidirectional texture functions. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2013
Lu, F., He, L., You, S., Chen, X., Hao, Z.: Identifying surface BRDF from a single 4-D light field image via deep neural network. IEEE J. Sel. Top. Sig. Process. 11(7), 1047–1057 (2017)
Müller, G., Meseth, J., Sattler, M., Sarlette, R., Klein, R.: Acquisition, synthesis and rendering of bidirectional texture functions. In: Eurographics 2004, STAR - State of The Art Report, pp. 69–94. Eurographics Association (2004)
Ngan, A., Durand, F.: Statistical acquisition of texture appearance. In: Eurographics Symposium on Rendering. Eurographics (2006)
Pattanayak, S.: Pro Deep Learning with TensorFlow. Apress, New York (2017)
Sattler, M., Sarlette, R., Klein, R.: Efficient and realistic visualization of cloth. In: Eurographics Symposium on Rendering, June 2003
Wang, J., Dana, K.: Relief texture from specularities. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 446–457 (2006)
Wang, T.-C., Zhu, J.-Y., Hiroaki, E., Chandraker, M., Efros, A.A., Ramamoorthi, R.: A 4D light-field dataset and CNN architectures for material recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 121–138. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_8
Weinmann, M., Gall, J., Klein, R.: Material classification based on training data synthesized using a BTF database. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 156–171. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_11
Weinmann, M., Klein, R.: Material recognition for efficient acquisition of geometry and reflectance. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8927, pp. 321–333. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16199-0_23
Acknowledgments
The Czech Science Foundation project GAČR 19-12340S supported this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Mikeš, S., Haindl, M. (2019). View Dependent Surface Material Recognition. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2019. Lecture Notes in Computer Science(), vol 11844. Springer, Cham. https://doi.org/10.1007/978-3-030-33720-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-33720-9_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33719-3
Online ISBN: 978-3-030-33720-9
eBook Packages: Computer ScienceComputer Science (R0)