Skip to main content

Measuring Reflectance of Anisotropic Materials Using Two Handheld Cameras

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11844))

Included in the following conference series:

Abstract

In this paper, we propose a method for measuring the reflectance of anisotropic materials using a simple apparatus consisting of two handheld cameras, a small LED light source, a turning table and a chessboard with markers. The system is configured to obtain the different incoming and outgoing light directions, and the brightness of pixels on the surface of the material. The anisotropic Ward BRDF (Bidirectional Reflectance Distribution Function) model is used to approximate the reflectance, and the model parameters are estimated from the incoming and outgoing angles and the brightness of pixels by using a non-linear optimization method. The initial values of the anisotropic direction are given based on the peak specular lobe on the surface, and the best-fitted one is chosen for the anisotropic direction. The optimized parameters show the well-fitted results between the observed brightness and the BRDF model for each RGB channel. It was confirmed that our system was able to measure the reflectance of different isotropic and anisotropic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert, R.A., Chan, D.Y., Goldman, D.B., O’Brien, J.F.: Approximate svBRDF estimation from mobile phone video. In: Proceedings of the Eurographics Symposium on Rendering: Experimental Ideas & Implementations, SR 2018, pp. 11–22. Eurographics Association, Goslar (2018). https://doi.org/10.2312/sre.20181168

  2. Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18(1), 1–34 (1999)

    Article  Google Scholar 

  3. Fichet, A., Sato, I., Holzschuch, N.: Capturing spatially varying anisotropic reflectance parameters using Fourier analysis. In: Proceedings of the 42nd Graphics Interface Conference, GI 2016, Canadian Human-Computer Communications Society, School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, pp. 65–73 (2016). https://doi.org/10.20380/GI2016.09

  4. Filip, J., Vávra, R., Haindl, M., Zid, P., Krupicka, M., Havran, V.: BRDF slices: accurate adaptive anisotropic appearance acquisition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 2013

    Google Scholar 

  5. Furukawa, R., Kawasaki, H., Ikeuchi, K., Sakauchi, M.: Appearance based object modeling using texture database: acquisition, compression and rendering. In: Proceedings of the 13th Eurographics Workshop on Rendering, EGRW 2002, Aire-la-Ville, Switzerland, Switzerland, pp. 257–266. Eurographics Association (2002). http://dl.acm.org/citation.cfm?id=581896.581929

  6. Gardner, A., Tchou, C., Hawkins, T., Debevec, P.: Linear light source reflectometry. ACM Trans. Graph. 22(3), 749–758 (2003). https://doi.org/10.1145/882262.882342. http://doi.acm.org/10.1145/882262.882342

    Article  Google Scholar 

  7. Garrido-Jurado, S., Muñoz Salinas, R., Madrid-Cuevas, F., Marín-Jiménez, M.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 47(6), 2280–2292 (2014). https://doi.org/10.1016/j.patcog.2014.01.005

    Article  Google Scholar 

  8. Hawkins, T., Cohen, J., Debevec, P.: A photometric approach to digitizing cultural artifacts. In: Proceedings of the 2001 Conference on Virtual Reality, Archeology, and Cultural Heritage, pp. 333–342. ACM (2001)

    Google Scholar 

  9. Kaplanyan, A.S., Hanika, J., Dachsbacher, C.: The natural-constraint representation of the path space for efficient light transport simulation. ACM Trans. Graph. 33(4), 102:1–102:13 (2014). https://doi.org/10.1145/2601097.2601108. http://doi.acm.org/10.1145/2601097.2601108

    Article  MATH  Google Scholar 

  10. Luongo, A., et al.: Modeling the anisotropic reflectance of a surface with microstructure engineered to obtain visible contrast after rotation. In: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 159–165, October 2017. https://doi.org/10.1109/ICCVW.2017.27

  11. Murray-Coleman, J., Smith, A.: The automated measurement of BRDFs and their application to luminaire modeling. J. Illum. Eng. Soc. 19(1), 87–99 (1990). https://doi.org/10.1080/00994480.1990.10747944

    Article  Google Scholar 

  12. Ngan, A., Durand, F., Matusik, W.: Experimental analysis of BRDF models. In: Proceedings of the Eurographics Symposium on Rendering, pp. 117–226. Eurographics Association (2005)

    Google Scholar 

  13. Rump, M., Müller, G., Sarlette, R., Koch, D., Klein, R.: Photo-realistic rendering of metallic car paint from image-based measurements. Comput. Graph. Forum 27(2), 527–536 (2008)

    Article  Google Scholar 

  14. Rump, M., Sarlette, R., Klein, R.: Groundtruth data for multispectral bidirectional texture functions. In: Proceedings of the CGIV/MCS 2010, pp. 326–330. Society for Imaging Science and Technology, June 2010

    Google Scholar 

  15. Wang, J., Zhao, S., Tong, X., Snyder, J., Guo, B.: Modeling anisotropic surface reflectance with example-based microfacet synthesis. In: ACM SIGGRAPH 2008 Papers, SIGGRAPH 2008, pp. 41:1–41:9. ACM, New York (2008). https://doi.org/10.1145/1399504.1360640. http://doi.acm.org/10.1145/1399504.1360640

  16. Ward, G.J.: Measuring and modeling anisotropic reflection. SIGGRAPH Comput. Graph. 26(2), 265–272 (1992)

    Article  Google Scholar 

  17. Weinmann, M., Ruiters, R., Osep, A., Schwartz, C., Klein, R.: Fusing structured light consistency and Helmholtz normals for 3D reconstruction. In: BMVC (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zar Zar Tun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tun, Z.Z., Tsunezaki, S., Komuro, T., Yamamoto, S., Tsumura, N. (2019). Measuring Reflectance of Anisotropic Materials Using Two Handheld Cameras. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2019. Lecture Notes in Computer Science(), vol 11844. Springer, Cham. https://doi.org/10.1007/978-3-030-33720-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33720-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33719-3

  • Online ISBN: 978-3-030-33720-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics