Abstract
We present a novel geometry-based approach for the detection of small-scale cracks in a temporal series of 3D-reconstructions of concrete objects such as pillars and beams of bridges and other infrastructure. The detection algorithm relies on a geometry-derived coloration of the 3D surfaces for computing the optical flow between time steps. Our filtering technique identifies cracks based on motion discontinuities in the local crack neighborhood. This approach avoids using the material color which is likely to change over time due to weathering and other environmental influences. In addition, we detect and exclude regions with significant local changes in geometry over time e.g. due to vegetation. We verified our method with reconstructions of a horizontal concrete beam under increasing vertical load at the center. For this case, where the main crack direction is known and a precise registration of the beam geometries over time exists, this approach produces accurate crack detection regardless of substantial color variations and is also able to mask out regions with simulated growth of vegetation over time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agnisarman, S., Lopes, S., Madathil, K.C., Piratla, K., Gramopadhye, A.: A survey of automation-enabled human-in-the-loop systems for infrastructure visual inspection. Autom. Constr. 97, 52–76 (2019)
Morgenthal, G., Hallermann, N., Kersten, J., Taraben, J., Debus, P., Helmrich, M., Rodehorst, V.: Framework for automated UAS-based structural condition assessment of bridges. Autom. Constr. 97, 77–95 (2019)
Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)
Chaudhury, S., Nakano, G., Takada, J., Iketani, A.: Spatial-temporal motion field analysis for pixelwise crack detection on concrete surfaces. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 336–344. IEEE (2017)
Yamaguchi, T., Nakamura, S., Saegusa, R., Hashimoto, S.: Image-based crack detection for real concrete surfaces. IEEJ Trans. Elect. Electron. Eng. 3, 128–135 (2008)
Yamaguchi, T., Hashimoto, S.: Fast crack detection method for large-size concrete surface images using percolation-based image processing. Mach. Vis. Appl. 21, 797–809 (2010)
Nishikawa, T., Yoshida, J., Sugiyama, T., Fujino, Y.: Concrete crack detection by multiple sequential image filtering. Comput. Aided Civil Infrastruct. Eng. 27, 29–47 (2012)
Cha, Y.J., Choi, W., Büyüköztürk, O.: Deep learning-based crack damage detection using convolutional neural networks. Comput. Aided Civil Infrastruct. Eng. 32, 361–378 (2017)
Chen, F.C., Jahanshahi, M.R.: NB-CNN: deep learning-based crack detection using convolutional neural network and Naive Bayes data fusion. IEEE Trans. Ind. Electron. 65, 4392–4400 (2018)
Benning, W., Lange, J., Schwermann, R., Effkemann, C., Görtz, S.: Monitoring crack origin and evolution at concrete elements using photogrammetry. In: ISPRS Congress Istanbul Commission, vol. 2004. (2004)
Bruck, H., McNeill, S., Sutton, M.A., Peters, W.: Digital image correlation using newton-raphson method of partial differential correction. Exp. Mech. 29, 261–267 (1989)
Hutt, T., Cawley, P.: Feasibility of digital image correlation for detection of cracks at fastener holes. NDT & E Int. 42, 141–149 (2009)
Poissant, J., Barthelat, F.: A novel “subset splitting” procedure for digital image correlation on discontinuous displacement fields. Exp. Mech. 50, 353–364 (2010)
Rupil, J., Roux, S., Hild, F., Vincent, L.: Fatigue microcrack detection with digital image correlation. J. Strain Anal. Eng. Des. 46, 492–509 (2011)
Qu, Z., Lin, L.D., Guo, Y., Wang, N.: An improved algorithm for image crack detection based on percolation model. IEEJ Trans. Electr. Electron. Eng. 10, 214–221 (2015)
Li, Y., Li, H., Wang, H.: Pixel-wise crack detection using deep local pattern predictor for robot application. Sensors 18, 3042 (2018)
Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_3
Laine, S., Karras, T.: Efficient sparse voxel octrees. IEEE Trans. Vis. Comput. Graph. 17, 1048–1059 (2011)
Pfister, H., Zwicker, M., Van Baar, J., Gross, M.: Surfels: surface elements as rendering primitives. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 335–342. ACM Press/Addison-Wesley Publishing Co. (2000)
Botsch, M., Hornung, A., Zwicker, M., Kobbelt, L.: High-quality surface splatting on today’s GPUs. In: 2005 Eurographics/IEEE VGTC Symposium Proceedings on Point-Based Graphics, pp. 17–141. IEEE (2005)
Goswami, P., Erol, F., Mukhi, R., Pajarola, R., Gobbetti, E.: An efficient multi-resolution framework for high quality interactive rendering of massive point clouds using multi-way kd-trees. Vis. Comput. 29, 69–83 (2013)
Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24672-5_18
Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15558-1_26
Thanou, D., Chou, P.A., Frossard, P.: Graph-based compression of dynamic 3D point cloud sequences. IEEE Trans. Image Process. 25, 1765–1778 (2016)
Palma, G., Cignoni, P., Boubekeur, T., Scopigno, R.: Detection of geometric temporal changes in point clouds. In: Computer Graphics Forum, vol. 35, pp. 33–45. Wiley Online Library (2016)
Alexandre, L.A.: 3D descriptors for object and category recognition: a comparative evaluation. In: Workshop on Color-Depth Camera Fusion in Robotics at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, vol. 1 (2012)
Tombari, F., Salti, S., Di Stefano, L.: Unique shape context for 3D data description. In: Proceedings of the ACM Workshop on 3D Object Retrieval, pp. 57–62. ACM (2010)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)
Acknowledgments
This work was supported by the German Federal Ministry of Education and Research (BMBF) under the project number 13N14657 (Project AISTEC). The concrete beam data set used in this work is courtesy of Bauhaus-Universität Weimar.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Matthes, C., Kreskowski, A., Froehlich, B. (2019). A Geometry-Based Method for the Spatio-Temporal Detection of Cracks in 4D-Reconstructions. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2019. Lecture Notes in Computer Science(), vol 11844. Springer, Cham. https://doi.org/10.1007/978-3-030-33720-9_47
Download citation
DOI: https://doi.org/10.1007/978-3-030-33720-9_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33719-3
Online ISBN: 978-3-030-33720-9
eBook Packages: Computer ScienceComputer Science (R0)