Skip to main content

A Geometry-Based Method for the Spatio-Temporal Detection of Cracks in 4D-Reconstructions

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11844))

Included in the following conference series:

  • 2224 Accesses

Abstract

We present a novel geometry-based approach for the detection of small-scale cracks in a temporal series of 3D-reconstructions of concrete objects such as pillars and beams of bridges and other infrastructure. The detection algorithm relies on a geometry-derived coloration of the 3D surfaces for computing the optical flow between time steps. Our filtering technique identifies cracks based on motion discontinuities in the local crack neighborhood. This approach avoids using the material color which is likely to change over time due to weathering and other environmental influences. In addition, we detect and exclude regions with significant local changes in geometry over time e.g. due to vegetation. We verified our method with reconstructions of a horizontal concrete beam under increasing vertical load at the center. For this case, where the main crack direction is known and a precise registration of the beam geometries over time exists, this approach produces accurate crack detection regardless of substantial color variations and is also able to mask out regions with simulated growth of vegetation over time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agnisarman, S., Lopes, S., Madathil, K.C., Piratla, K., Gramopadhye, A.: A survey of automation-enabled human-in-the-loop systems for infrastructure visual inspection. Autom. Constr. 97, 52–76 (2019)

    Article  Google Scholar 

  2. Morgenthal, G., Hallermann, N., Kersten, J., Taraben, J., Debus, P., Helmrich, M., Rodehorst, V.: Framework for automated UAS-based structural condition assessment of bridges. Autom. Constr. 97, 77–95 (2019)

    Article  Google Scholar 

  3. Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  4. Chaudhury, S., Nakano, G., Takada, J., Iketani, A.: Spatial-temporal motion field analysis for pixelwise crack detection on concrete surfaces. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 336–344. IEEE (2017)

    Google Scholar 

  5. Yamaguchi, T., Nakamura, S., Saegusa, R., Hashimoto, S.: Image-based crack detection for real concrete surfaces. IEEJ Trans. Elect. Electron. Eng. 3, 128–135 (2008)

    Article  Google Scholar 

  6. Yamaguchi, T., Hashimoto, S.: Fast crack detection method for large-size concrete surface images using percolation-based image processing. Mach. Vis. Appl. 21, 797–809 (2010)

    Article  Google Scholar 

  7. Nishikawa, T., Yoshida, J., Sugiyama, T., Fujino, Y.: Concrete crack detection by multiple sequential image filtering. Comput. Aided Civil Infrastruct. Eng. 27, 29–47 (2012)

    Article  Google Scholar 

  8. Cha, Y.J., Choi, W., Büyüköztürk, O.: Deep learning-based crack damage detection using convolutional neural networks. Comput. Aided Civil Infrastruct. Eng. 32, 361–378 (2017)

    Article  Google Scholar 

  9. Chen, F.C., Jahanshahi, M.R.: NB-CNN: deep learning-based crack detection using convolutional neural network and Naive Bayes data fusion. IEEE Trans. Ind. Electron. 65, 4392–4400 (2018)

    Article  Google Scholar 

  10. Benning, W., Lange, J., Schwermann, R., Effkemann, C., Görtz, S.: Monitoring crack origin and evolution at concrete elements using photogrammetry. In: ISPRS Congress Istanbul Commission, vol. 2004. (2004)

    Google Scholar 

  11. Bruck, H., McNeill, S., Sutton, M.A., Peters, W.: Digital image correlation using newton-raphson method of partial differential correction. Exp. Mech. 29, 261–267 (1989)

    Article  Google Scholar 

  12. Hutt, T., Cawley, P.: Feasibility of digital image correlation for detection of cracks at fastener holes. NDT & E Int. 42, 141–149 (2009)

    Article  Google Scholar 

  13. Poissant, J., Barthelat, F.: A novel “subset splitting” procedure for digital image correlation on discontinuous displacement fields. Exp. Mech. 50, 353–364 (2010)

    Article  Google Scholar 

  14. Rupil, J., Roux, S., Hild, F., Vincent, L.: Fatigue microcrack detection with digital image correlation. J. Strain Anal. Eng. Des. 46, 492–509 (2011)

    Article  Google Scholar 

  15. Qu, Z., Lin, L.D., Guo, Y., Wang, N.: An improved algorithm for image crack detection based on percolation model. IEEJ Trans. Electr. Electron. Eng. 10, 214–221 (2015)

    Article  Google Scholar 

  16. Li, Y., Li, H., Wang, H.: Pixel-wise crack detection using deep local pattern predictor for robot application. Sensors 18, 3042 (2018)

    Article  Google Scholar 

  17. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_3

    Chapter  Google Scholar 

  18. Laine, S., Karras, T.: Efficient sparse voxel octrees. IEEE Trans. Vis. Comput. Graph. 17, 1048–1059 (2011)

    Article  Google Scholar 

  19. Pfister, H., Zwicker, M., Van Baar, J., Gross, M.: Surfels: surface elements as rendering primitives. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 335–342. ACM Press/Addison-Wesley Publishing Co. (2000)

    Google Scholar 

  20. Botsch, M., Hornung, A., Zwicker, M., Kobbelt, L.: High-quality surface splatting on today’s GPUs. In: 2005 Eurographics/IEEE VGTC Symposium Proceedings on Point-Based Graphics, pp. 17–141. IEEE (2005)

    Google Scholar 

  21. Goswami, P., Erol, F., Mukhi, R., Pajarola, R., Gobbetti, E.: An efficient multi-resolution framework for high quality interactive rendering of massive point clouds using multi-way kd-trees. Vis. Comput. 29, 69–83 (2013)

    Article  Google Scholar 

  22. Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24672-5_18

    Chapter  Google Scholar 

  23. Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15558-1_26

    Chapter  Google Scholar 

  24. Thanou, D., Chou, P.A., Frossard, P.: Graph-based compression of dynamic 3D point cloud sequences. IEEE Trans. Image Process. 25, 1765–1778 (2016)

    Article  MathSciNet  Google Scholar 

  25. Palma, G., Cignoni, P., Boubekeur, T., Scopigno, R.: Detection of geometric temporal changes in point clouds. In: Computer Graphics Forum, vol. 35, pp. 33–45. Wiley Online Library (2016)

    Google Scholar 

  26. Alexandre, L.A.: 3D descriptors for object and category recognition: a comparative evaluation. In: Workshop on Color-Depth Camera Fusion in Robotics at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, vol. 1 (2012)

    Google Scholar 

  27. Tombari, F., Salti, S., Di Stefano, L.: Unique shape context for 3D data description. In: Proceedings of the ACM Workshop on 3D Object Retrieval, pp. 57–62. ACM (2010)

    Google Scholar 

  28. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Federal Ministry of Education and Research (BMBF) under the project number 13N14657 (Project AISTEC). The concrete beam data set used in this work is courtesy of Bauhaus-Universität Weimar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Matthes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matthes, C., Kreskowski, A., Froehlich, B. (2019). A Geometry-Based Method for the Spatio-Temporal Detection of Cracks in 4D-Reconstructions. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2019. Lecture Notes in Computer Science(), vol 11844. Springer, Cham. https://doi.org/10.1007/978-3-030-33720-9_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33720-9_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33719-3

  • Online ISBN: 978-3-030-33720-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics