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Abstract. With the popularization of Topological Data Analysis, the Reeb graph
has found new applications as a summarization technique in the analysis and
visualization of large and complex data, whose usefulness extends beyond just
the graph itself. Pairing critical points enables forming topological fingerprints,
known as persistence diagrams, that provides insights into the structure and noise
in data. Although the body of work addressing the efficient calculation of Reeb
graphs is large, the literature on pairing is limited. In this paper, we discuss two
algorithmic approaches for pairing critical points in Reeb graphs, first a multipass
approach, followed by a new single-pass algorithm, called Propagate and Pair.
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1 Introduction

The last two decades have witnessed great advances in methods using topology to
analyze data, in a process called Topological Data Analysis (TDA). Their popularity
is due in large part to their robustness and applicability to a variety of domains [17].
The Reeb graph [21], which encodes the evolution of the connectivity of the level sets
induced by a scalar function defined on a data domain, was originally proposed as a
data structure to encode the geometric skeleton of 3D objects, but recently it has been
re-purposed as a tool in TDA. Beside their usefulness in handling large data [12], Reeb
graphs and their non-looping relative, contour trees [5], have been successfully used in
feature detection [24], data reduction and simplification [7, 22], image processing [16],
shape understanding [2], visualization of isosurfaces [3] and many other applications.

One challenge with Reeb graphs is that the graph may be too large or complex to
directly visualize, therefore requiring further abstraction. Persistent homology [13], pa-
rameterizes topological structures by their life-time, providing a topological description
called the persistence diagram. The notion of persistence can be applied to any act of
birth that is paired with an act of death. Since the Reeb graph encodes the birth and the
death of the connected components of the level sets of a scalar function, the notion of
persistence can be applied to critical points in the Reeb graph [1]. The advantage of this
approach is simplicity and scalability—a large Reeb graph can be reduced to a much eas-
ier to interpret scatterplot. Fig. 1 shows an example, where a mesh with a scalar function
(Fig. 1(a)) is converted into a Reeb graph (Fig. 1(b)). After that, the critical points are

ar
X

iv
:1

90
9.

01
51

3v
2 

 [
cs

.C
G

] 
 6

 S
ep

 2
01

9



2 J. Tu et al.

(a) Data (b) Reeb graph

(c) Split Tree

(d) Join Tree (e) Ess. Forks

(f) Dg0( f )

(g) ExDg1( f )

Fig. 1. (a) A mesh with a scalar function being processed into (b) a Reeb graph, where critical
points are paired. In the multipass approach, (c) a split tree and (d) a join tree are first extracted for
non-essential pairing. Next, the (e) essential forks are paired, one at a time. (f) The persistence
diagram and (g) extended persistence diagram provide a visualization of the pairings.

paired, and the persistence diagram displays the data (Fig. 1(f) and 1(g)). This final step
can be challenging, particularly when considering essential critical points—those critical
points associated with cycles in the Reeb graph—that each require an expensive search.
While many prior works [8–11, 14, 15, 18, 20, 25] have provided efficient algorithms
for the calculation of Reeb graph structures, to our knowledge, none have provided a
detailed description of an algorithm for pairing critical points.

In this paper, we describe and test 2 algorithms to compute persistence diagrams from
Reeb graphs. The first is a multipass approach that pairs non-essential (non-loop) critical
points using branch decomposition [19] on join and split trees, then pairing essential
critical points also using join trees. This leads to our second approach, an algorithm for
pairing both non-essential and essential critical points in a single-pass.

2 Reeb Graphs and Persistence Diagrams

2.1 Reeb graph

Let X be a triangulable topological space, and let f : X → IR be a continuous function
defined on it. The Reeb graph, R f , can be thought of as a topological summary of the
space X using the information encoded by the scalar function f . More precisely, the
Reeb graph encodes the changes that occur to connected components of the level sets
of f−1(r) as r goes from negative infinity to positive infinity. Fig. 1(a) and 1(b) show
an example of a Reeb graph defined on a surface. For the sake of simplicity we plot the
Reeb graph using the height function indicated by the vertical coordinate in the Figure.

The function f can be used to classify points on the Reeb graph as follows. Let x be
a point in R f . The up-degree of x is the number of branches (1-cells) incident to x that
have higher values of f than x. The down-degree of x is defined similarly. A point x on
R f is said to be regular if its up-degree and down-degree are equal to one. Otherwise it
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is a critical point. A critical point on the Reeb graph is also a node of the Reeb graph.
A critical point is called a minimum if its down-degree is equal to 0. Symmetrically, a
critical point is said a maximum if its up-degree is equal to 0. Finally, a critical point is
said to be a down-fork/up-fork if its down-degree/up-degree is larger than 1.

2.2 Persistent Homology

The notion of persistent homology was originally introduced by Edelsbrunner et al. [13].
Here we present the theoretical setting for the computation of the persistence diagram
associated with a scalar function defined on a triangulated topological space. Consider
the p-dimensional homology class Hp of a space, where H0 are components, H1 are
tunnels/cycles, H2 are voids, etc. Persistent homology evaluates a sequence of vector
spaces: 0 = Hp(X0)→ Hp(X1)→ ··· → Hp(Xn) = Hp(X), where Xi = X≤ fi , recording
the birth and death events. In particular, the p-th ordinary persistence diagram of f ,
denoted as Dgp( f ), is a multiset of pairs (b,d) corresponding to the birth b and death d
values of some p-dimensional homology class.

Since the homology Hp(X) may not be trivial in general, any nontrivial homology
class of Hp(X), referred to as an essential homology class, will never die during the
sequence. These events are associated with the cyclic portions of the Reeb graph. We
refer to the multiset of points encoding the birth and death time of pth homology classes
created in the ordinary part and destroyed in the relative part of the sequence as the
p-th extended persistence diagram of f , denoted by ExDgp( f ). In particular, for each
point (b,d) in ExDgp( f ) there is an essential homology class in Hp(X) that is born in
Hp(X≤b) and dies at Hp(X≥d). Observe that for the extended persistence diagram the
birth time b for an essential homology class in Hp(X≤b) is larger than or equal to death
time d for the relative homology class in Hp(X≥d) that kills it.

2.3 Persistence Diagram of Reeb Graph

Of interest to us are the persistence diagram Dg0( f ) and extended persistence diagram
ExDg1( f ). Pairing critical points can be computed independently of the Reeb graph.
However, it is more efficiently computed by considering the Reeb graph R f . We give an
intuitive explanation here and refer the reader to [4] for more details.

First, we distinguish between 2 types of forks in the Reeb graph, namely the ordinary
(non-essential) forks and the essential forks. Let R f be a Reeb graph and let s be a
down-fork such that a = f (s). We say that the down-fork s is an ordinary fork if the
lower branches of s are contained in disjoint connected components C1 and C2 of (R f )<a.
The down-fork a is said to be essential if it is not ordinary. The ordinary and essential
up-forks are defined similarly.

Ordinary Down-Forks of a Reeb Graph. We first consider pairing down-forks using
sublevel set filtration. We track changes that occur in H0((R f )≤a) as a increases. A
connected component of (R f )≤a is created when a passes through a minimum of R f . Let
C be a connected component of (R f )≤a. We say that a local minimum a of R f creates
C if a is the global minimum of C. Every ordinary down-fork is paired with a local
minimum to form one point in the persistence diagram Dg0( f ) as follows. Let s be an
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ordinary down-fork with f (a) = s and let C1 and C2 be the connected components of
(R f )<a. Let x1 and x2 be the creators of C1 and C2. Without loss of generality we assume
that f (x1)< f (x2). The homology class [x2] that is created at f (x2) and dies at f (s) gives
rise to a point (x2,s) in the ordinary persistence diagram Dg0( f ). Note, a pair occurs
when the minimum is a branch in the Reeb graph, hence we name it a branching feature.

Ordinary Up-Forks of a Reeb Graph. Ordinary up-forks are paired similarly using
superlevel set filtration, pairing each up-fork with a local maximum to form points in the
persistence diagram, Dg0( f ), with the following variations. For an ordinary up-fork, s,
with f (a) = s, connected components C1 and C2 now come from (R f )>a. Assuming that
f (x1)< f (x2), the homology class [x1] that is created at f (x1) dies at f (s) and gives rise
to a point (x1,s) in Dg0( f ).

Cycle Features of a Reeb Graph. Let s be an essential down-fork. We call the down-
fork s a creator of a 1-cycle in the sublevel set (R f )≤a. As shown in [1], s will be
paired with an essential up-fork s′ to form an essential pair (s′,s), and a point (s′,s) in
the extended persistence diagram ExDg1( f ). The essential up-fork s′ is determined as
follows. Let Γs be the set of all cycles born at s, each corresponding to a cycle in R f . Let
γs be an element of Γs with largest minimum value of f among these cycles born at s.
The point s′ is the point that the function f achieves this minimum on the cycle γs.

3 Conditioning the Graph

Our approach is restricted to Reeb graphs where all point are either a minimum, maxi-
mum, up-fork with up-degree 2, or down-fork with down-degree 2. Fortunately, graphs
that do not abide by these requirements can be conditioned to fit them. We define the
J : K degree of a node as the J up-degree and K down-degree.

There are 4 node conditions to be corrected: 1:1 nodes—Nodes with both 1 up- and 1
down-degree are regular. Therefore, they only need to be removed from the graph. This
is done by removing the regular point and reconnecting the nodes above and below, as
seen in Fig. 2(a). 0:2 (and 2:0) nodes—Nodes with 0 up-degree and 2 down-degree
(or vice versa) are degenerate maximum (minimum) nodes, in that they are both down-
fork (up-fork) and local maximum (minimum). As shown in Fig. 2(b), this condition is
corrected by added a new node for the local maximum ε higher value, where ε is a small
number. This type of degenerate node rarely occurs in Reeb graphs, but it frequently
occurs in approximations of a Reeb graph, such as Mapper [23]. 2:2 nodes—Nodes with
both 2 up- and 2 down-degree are degenerate double forks, both down-fork and up-fork.
Fig. 2(c) shows how double forks can be corrected by splitting into 2 separate forks,
one up- and one down-fork, ε distance apart. 1:N>2 (and N>2:1) nodes—Nodes with
down-degree (or up-degree) 3 or higher, are difficult forks to pair. These forks correspond
to complex saddles in f , such as monkey saddles. A single critical point pairing to these
forks just reduces the degree of down-fork by 1, requiring complicated tracking of pairs.
To simplify this, as seen in Fig. 2(d), these forks can be split into 2 forks ε apart. The
upper down-fork retains 1 of the original down edges. The new down-fork connects with
the old and takes the remaining down-edges. For even higher-order forks, the operation
can be repeated on the lower down-fork.
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(a) Non-Critical (b) Degenerate Max

(c) Double Fork (d) Complex Fork

(e) The 4 cases of stack configurations and their
result. Type 1 and 2 involve stack reorganization,
while Type 3a and 3b are pairing operations.

Fig. 2. (a-d) Before pairing, the nodes of Reeb graph are conditioned considering 4 node configu-
rations. New nodes and edges are shown in blue. (e) For non-essential fork pairing in the multipass
algorithm, the 4 cases for stack processing are illustrated with their resulting configurations.

Beyond these requirements, the Reeb graph is assumed a single connected component.
If not, each connected component can simply be extracted and processed individually.
Finally, all nodes on the Reeb graph are assumed to have unique function values. If not,
some processing order is arbitrary, and 0-persistence features may result.

4 Multipass Approach

The persistence diagram Dg0( f ) can be obtained by pairing the non-essential fork nodes
of the Reeb graph. The extended persistence diagram ExDg1( f ) can be obtained by
pairing of essential fork nodes. We demonstrate these 2 steps using Fig. 1 as an example.

4.1 Non-Essential Fork Pairing

Identifying the non-essential forks can be reduced to calculating join and split trees on
the Reeb graph (see Fig. 1(c) and 1(d)), in our case, using Carr et al.’s approach [6]. Next,
a stack-based algorithm, based upon branch decomposition [19], pairs critical points.
The algorithm operates as a depth first search that seeks out simply connected forks (i.e.,
forks connected to 2 leaves) and recursively pairs and collapses the tree.

The algorithm processes the tree using a stack that is initially seeded with the root of
the tree. At each iteration, 1 of 3 operation types occurs, as seen in Fig. 2(e). Operation
Type 1 occurs when the top of the stack is a fork. In this case, the children of the fork are
pushed onto the stack. Operation Type 2 occurs when the top of the stack is a leaf, but
the next node is a fork. In this case, the leaf and fork have their orders swapped. Finally,
operation Type 3 has 2 variants that occur when 2 leaf nodes sit atop the stack. In both
variants, one leaf is paired with the fork, and the other leaf is pushed back onto the stack.
The pairing occurs with the leaf that has a value closer to the value of the fork. The stack
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(a) Example processing the join tree from Fig. 1(d). (b) Timestep from scivis contest data.

Fig. 3. (a) An example pairing of the join tree from Fig. 1(d) shows the stack at each processing
step, from left to right. (b) Timestep (066) from the scivis contest data is shown with concentration
mapped to color (left), along with Dg0 (top) showing up-forks in blue and down-forks in red; and
the ExDg1 (bottom) showing cycles in purple.

is processed until only a single leaf node remains, the global minimum/maximum of the
join/split trees, respectively. The algorithm operates identically on both join and split
trees. Finally, the unpaired global minimum and maximum are paired.

Fig. 3(a) shows an example for the join tree in Fig. 1(d). Initially the root K is placed
on the stack. A Type 1 operation pushes the children, G and H, onto the stack. Next, a
Type 2 operation reorders the top of the stack. G, a down-fork, in now atop the stack,
pushing its 2 children, E and C, onto the stack. Another Type 1 pushes C’s children, A
and B onto the stack. In the next 3 steps, a series of Type 3 operations occur. First B
and C are paired, followed by E and G, and finally H and K. At the end, A, the global
minimum, is the only point remaining on the stack. The assigned pairs, B/C, E/G, and
H/K, appear in the Dg0( f ) in Fig. 1(f), along with the split tree pairing, O/N, and the
global min/max pairing, A/P.

4.2 Essential Forks Pairing

The remaining unpaired forks are essential forks, as seen in Fig. 1(e). We developed an
algorithm from the high-level description of [4] to pair them. The essential fork pairing
algorithm can be treated as join tree problem, processing forks one at a time. For a given
up-fork, s, the node can be split into two temporary nodes, sL and sR. A join tree can
be computed by sweeping the superlevel set. At each step of the sweep, the connected
components are calculated. The pairing for a selected essential up-fork occurs at the
down-fork that merges sL and sR into a single connected component.

Fig. 4 shows the sweeping process for the up-fork D. Initially (Fig. 4(a)), D is split
into DL and DR, which are each part of separate connected components, denoted by
color (Fig. 4(b)). As the join tree is swept past E (Fig. 4(c)), a new connected component
is formed. In Fig. 4(d), F is added to the connected component of DR. As the join
tree is swept past G (Fig. 4(e)), the E and DL connected components join. The process
continues until Fig. 4(h), where 3 connected components exist. The purple and yellow
components join at K (Fig. 4(i)). Finally at L (Fig. 4(j)), both DL and DR are part of the
same connected component. This indicates that D pairs with L. Fig. 4(k-m) shows the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

(k) D superlevel set (left) and join tree (right)

(l) F superlevel set (left) and join tree (right)

(m) I superlevel set (left) and join tree (right)

Fig. 4. Essential fork pairing in the multipass algorithm for the example Reeb graph from Fig. 1.
(a-j) The join tree-based essential fork pairing for up-fork D. (a) D is initially split into DL and DR.
(b-i) The colors indicate different connected components as the join tree is swept up the superlevel
set. (j) The pairing is found when DL and DR are contained in the same connected component.
(k-m) Each up-fork (D, F , and I, respectively) is split into 2 pieces and a join tree calculated from
the superlevel set to find the partner.

superlevel sets and associated join trees for the up-forks D, F , and I. The pairing partner
L/D, J/F , and M/I can all be seen in the ExDg1( f ) in Fig. 1(g).

5 Single-Pass Algorithm: Propagate and Pair

In the previous section, we showed that the critical point pairing problem could be broken
down into a series of merge tree computations. For non-essential forks this was in the
form of join and split trees, which are merge trees of the superlevel sets and sublevel sets,
respectively. For essential saddles, it came in the form of a special join tree calculation
for each essential up-fork. A natural question is whether these merge tree calculations
can be combined into a single-pass operation, which is precisely what follows.
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5.1 Basic Propagate and Pair

The Propagate and Pair algorithm operates by sweeping the Reeb graph from lowest to
highest value. At each point, a list of unpaired points from the sublevel set is maintained.
When a point is processed in the sweep, 2 possible operations occur on these lists:
propagate and/or pair.

Propagate. The job of propagate is to push labels from unpaired nodes further up the
unprocessed Reeb graph. 4 cases exist.

– For local minima a label for the current critical point is propagated upward. In the
examples of Fig. 5(a) and 5(b), both A and B are propagated to C.

– For local maxima nothing needs to propagate.
– For down-forks all unpaired labels are propagated upwards. In the example of

Fig. 5(c), the critical points B and C are paired, thus only A is propagated to D.
– For up-forks all unpaired labels are propagated upwards. Additional labels for

the current up-fork are created and tagged with the specific branch of the fork that
created them (in the examples with subscripts L and R). This tag is critical for closing
essential cycles. In the example of Fig. 5(d), the labels A and DL are propagated to
G, and labels A and DR are propagated to F .

Pair. The pairing operation searches the list of labels to determine an appropriate pairing
partner from the sublevel set. The pairing operation only occurs for local maxima and
down-forks.

– For local maxima the labels list is searched for the unpaired up-fork with the largest
value. Those critical points are then paired. In Fig. 5(o), for local maximum O, the
list is searched and NL is determined to be the closest unpaired up-fork.

– For down-forks two possible cases exist, essential or non-essential, which can be
differentiated by searching the available labels. First, the list is searched for the
largest up-fork with both legs. Both legs indicate that the current down-fork closes
a cycle with the associated up-fork. In the example, Fig. 5(m), the list of M is
searched and labels IL and IR found. If no such up-fork exists, then the down-fork
is non-essential. In this case, the highest valued local minimum is selected from
the list. In the example of Fig. 5(c), no essential up-forks are found for C, and the
largest local minimum, B is selected instead.

5.2 Virtual Edges for Propagate and Pair

The basic propagate and pair will fail in certain cases, such as in Fig. 6(a). The failure
arises from the assumption that the superlevel set is the only thing needed to propagate
labels. In this case, label information needs to be communicated between E and F , which
are connected by the node D in the sublevel set. To resolve this communication issue,
virtual edges are used. Virtual edges have 4 associated operations.

Virtual Edge Creation. Virtual edges are created on all up-fork operations. For example
in Fig. 6(b), when processing B, the endpoints of the fork, E and F are connected with
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(a) Local min (b) Local min (c) Non-ess. d-f (d) Ess. u-f (e) Local min

(f) Ess. u-f (g) Non-ess. d-f (h) Local min (i) Ess. u-f (j) Ess. d-f

(k) Non-ess. d-f (l) Ess. d-f (m) Ess. d-f (n) Non-ess. u-f (o) Local max

Fig. 5. Propagate and Pair algorithm on the Reeb graph from Fig. 1. At each step, the node being
processed is in bold; propagated edges are shown in brackets; pairing is shown in blue; and virtual
edges are shown in orange. (ess.: essential; non-ess.: non-essential; d-f: down-fork; u-f: up-fork)

virtual edge VB. Similarly, in Fig. 6(c), when processing up-fork D, another virtual edge
VD is created connecting the endpoint, E and F .

Label Propagation. Propagating labels across virtual edges is similar to standard
propagation with one additional condition. A label can only be propagated if its value is
less than that of the up-fork that generated the virtual edge. In other words, for a given
label X and a virtual edge VY , X is only propagated if f (X) < f (Y ). Looking at the
example in Fig. 6(d), for the virtual edge VB, only A is propagated because f (A)< f (B).
For the virtual edge VD: A, BL, and C are all propagated, since they all have values
smaller than D.

Virtual Edge Merging. When processing down-forks, all incoming virtual edges need
to be pairwise merged. Fig. 6(k) shows an example. When processing down-fork N, the
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(a) Failure case for propagate and pair

(b) B created v. edge (c) D created v. edge

(d) Label prop. (e) V. edge prop.

(f) Initial (g) J created v. edge

(h) K created v. edge (i) V. edge prop.

(j) V. edge prop. (k) V. edge merge to VJK

Fig. 6. Example where the basic propagate and pair algorithm fails. (a-e) In this case, B and F
should pair but do not. To overcome this limitation, (b-c) virtual edges are created as up-forks are
processed. (d) Labels can then be propagated across virtual edges. (e) The virtual edges themselves
are propagated and redundant edges removed. (f-k) An example requiring virtual edge merging.
(g-h) Virtual edges are created. (i-j) Virtual edges are propagated. (k) At the down-fork N, virtual
edges VJ and VK are propagated and merged into VJK .

virtual edges VJ and VK are merged into a new virtual edge VJK . For the purpose of label
propagation, the virtual edge uses its minimum saddle, in this case J.

Virtual Edge Propagation. Finally, virtual edges themselves need to be propagated.
For up-forks, all virtual edges are propagated up to both neighboring nodes. In the case of
down-forks, all virtual edges are similarly propagated, as we see in Fig. 6(e). During the
virtual edge propagation phase, redundant virtual edges can also be culled. For example,
the virtual edge VD is a superset of VB. Therefore, VB can be discarded. The necessity of
the virtual edge process can also be seen in Fig. 5. In Figures 5(i)-5(l), the pairing of L
with D is only possible because of the virtual edge created by I in Fig. 5(i).

6 Evaluation

We have implemented the described algorithms using Java. Performance reported in
Table 1 was calculated on a 2017 MacBook Pro, 3.1 Ghz i5 CPU, 8 GB RAM.

We investigate the performance of the algorithms using the following:
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– Synthetic split trees, join trees, and Reeb graphs generated by a Python script. Given
a positive integer n, where n = {100,500,1000,3000,5000}, the script creates a
fork G1 consisting of a node with valency 3 and 3 nodes with valency 1 linked to
the 3-valence node. At each iteration i < n, another fork is generated, and 1 or 2 of
its 1 valency nodes are glued to the nodes in Gi−1 with valency 1. Constraining the
gluing to a single node at each iteration results in a split tree.

– Reeb graphs calculated on publicly available meshes in Figures 8 and meshes
provided by AIM@SHAPE Shape Repository. Reeb graphs were extracted using
our own Reeb graph implementation in C++.

– Time-series of 120 Mapper graphs taken from the 2016 SciVis Contest3, a large
time-varying multi-run particle simulation, in Fig. 3(b). Our evaluation took one
realization, smoothing length 0.44, run 50, and calculated the Mapper graphs for all
120 time-steps using the variable concentration. Our video, available at https://
youtu.be/AcJX4GdzBZY, shows the entire sequence. The Mapper graphs were
generated using a Python script that follows the standard Mapper algorithm [23].

Overview of Results. The performance for the algorithms can be seen in Table 1.
These values were obtained by running the test 1000 times and storing the average
compute time. The persistence diagrams of both the single-pass and multipass algorithms
were compared in order to verify correctness. For most cases, the single-pass approach
outperformed the multipass approach. The exceptions being the random split tree, random
graph, and SciVis contest data, each of which we will discuss.

3 https://www.uni-kl.de/sciviscontest/

Table 1. Performance for all datasets tested. Bold indicates the faster algorithm.

Data Figure Mesh Reeb Graph Nodes Cycles Multipass Single-pass
Vertices Faces Initial Cond. Time (ms) Time (ms)

random tree 100 401 204 0 2.45e-02 2.71e-02 (split)
9.06e-03 (join)

random tree 500 2001 1004 0 0.13 0.18 (split)
4.90e-02 (join)

random tree 1000 4001 2004 0 0.42 0.30 (split)
0.11 (join)

random tree 3000 12001 6004 0 1.10 1.98 (split)
0.39 (join)

random tree 5000 20001 10004 0 2.11 3.39 (split)
0.75 (join)

random graph 100 401 112 46 1.90e-02 1.76e-02
random graph 500 2001 542 231 0.48 0.57
random graph 1000 4001 1010 497 0.55 0.59
random graph 3000 12001 3014 1495 1.71 1.91
random graph 5000 20001 5204 2400 14.35 24.45
4 torus 8(d) 10401 20814 23 10 4 2.06e-03 1.47e-03
buddah 8(c) 10098 20216 33 14 6 1.61e-03 1.16e-03
david 8(e) 26138 52284 8 8 3 7.82e-04 4.17e-04
double torus 8(a) 3070 6144 13 6 2 5.29e-04 2.80e-04
female 8(b) 8410 16816 15 8 0 7.82e-04 3.45e-04
flower 8(h) 4000 8256 132 132 65 2.80e-02 2.43e-02
greek 8(f) 39994 80000 23 10 4 8.62e-04 4.81e-04
topology 8(g) 6616 13280 28 28 13 4.34e-03 4.02e-03
scivis contest 3(b) 194k (avg) — 117 (avg) 178.2 (avg) 81.3 (avg) 3.82 (total) 4.18 (total)

https://youtu.be/AcJX4GdzBZY
https://youtu.be/AcJX4GdzBZY
https://www.uni-kl.de/sciviscontest/
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(a) Random split/join tree (b) Random graph (c) Cutting cycles in random graph 5000

Fig. 7. Plots of the compute time for various input sizes to (a) the random split/join tree and (b) the
random graph for Table 1. (c) Performance results when cutting cycles in the random graph 5000.
As more cycles that are cut, the single-pass algorithm begins to outperform the multipass variant.

Random Split Tree vs. Join Tree. We compared the exact same tree structures as split
trees and join trees by negating the function value of the input tree. The performance
observed in Table 1 and Fig. 7(a) shows that the join tree performs significantly better
than the split tree. The explanation for this is quite simple. The join tree consists of
exclusively down-forks, while the split tree consists of exclusively up-forks. Since only
up-forks generate virtual edges, the split tree created and processed many virtual edges,
while the join tree has none. In fact, split trees represent one worst case by generating
many unneeded virtual edges. From a practical standpoint, the algorithm can avoid
situations like this by switching sweep directions (i.e. top-to-bottom), when the number
of up-forks is significantly larger than the number of down-forks.

Random Graph. We next investigate the performance of randomly generated Reeb
graphs, shown in Table 1 and Fig. 7(b). These Reeb graphs consist predominantly of
cycles. This represents another type of worst case, since many up-forks generate virtual
edges, which are then merged into even more virtual edges at the down-forks. To verify
this, we ran an experiment, as seen in Fig. 7(c), that randomly cuts n cycles in the starting
Reeb graph random graph 5000 containing 2400 cycles. The break even was about 900
cycles (about 25% essential and 75% non-essential forks).

SciVis Contest Data. The SciVis contest data was “cycle heavy” as can be seen in the
persistence diagram of Fig. 3(b). Given the random graph analysis, it is unsurprising that
the performance of the single-pass approach was lower than the multipass approach.

7 Discussion & Conclusion

Pairing critical points is a key part of the TDA pipeline—the Reeb graphs capture com-
plex structure, but direct representation is impractical. Critical point pairing enables
a compact visual representation in the form of a persistence diagram. The value of
representing a dataset with the persistence diagram is the simplicity and efficiency. Per-
sistence diagrams avoid the occlusions problems of normal 3D datasets (e.g., the internal
structure of Fig. 3(b)), and they avoid the potential confusion of direct representation of
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(a) double torus (b) female (c) buddah

(d) 4 torus (e) david (f) greek

(g) topology (h) flower

Fig. 8. The meshes colored by the scalar value (left), Reeb graphs (middle), Dg0 with up-forks in
blue and down-forks in red (top), and ExDg1 cycles in purple (bottom) are shown for evaluation.

the Reeb graph (e.g., the Reeb graph of Fig. 8(h)). In addition, they provide sharp visual
cue for time-varying data (see our video).

Our results showed that although the single-pass algorithm tended to outperform
the multipass algorithm, there was no clear winner. We point out some advantages
and disadvantages for each. The multipass algorithm has an advantage in simplicity of
implementation. Once the merge tree and branch decomposition are implemented, the
only necessity is repeated calls to those algorithms. This approach also has a potential
advantage for (limited) parallelism. First, processing join and split trees in parallel, then
all essential up-forks. The single-pass algorithm showed a slight edge in performance,
particularly for data with a balance between essential and non-essential forks. The other
significant advantage of the approach is that it is in fact a single-pass approach, only
visiting critical points once. This is useful for streaming or time-varying data, where the
critical points arrive in order, but analysis cannot wait for the entire data to arrive.
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