Skip to main content

Dual Snapshot Hyperspectral Imaging System for 41-Band Spectral Analysis and Stereo Reconstruction

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11845))

Included in the following conference series:

Abstract

This paper deals with a novel hyperspectral imaging system based on a stereo camera arrangement. The spectral specifications of both cameras are complement to each other. Therefore, a total of 41 bands are available for the visual and near infrared range. The combined usage of different HSI cameras allow 3D reconstruction as well as the spectral analysis. For each pixel, there are 41 features that describe the location with spectral information. A geometrical alignment, radiometric calibration and normalization is needed to perform accurate measurements. Furthermore, the developed system will be evaluated with regard to its applicability for medical assistance functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mahmoud, N., et al.: Live tracking and dense reconstruction for hand-held monocular endoscopy. IEEE Trans. Med. Imaging 38, 79–89 (2018)

    Article  Google Scholar 

  2. Schuldt, D., Tanriverdi, F., Thiem, J.: Performance of stereo matching algorithms in 3D endoscopy. Biomed. Eng./Biomedizinische Technik 63(s1), 50 (2018)

    Google Scholar 

  3. Kumar, N., et al.: Hyperspectral tissue image segmentation using semi-supervised NMF and hierarchical clustering. IEEE Trans. Med. Imaging 38(5), 1304–1313 (2019)

    Article  Google Scholar 

  4. Zheng, C., Wang, N., Cui, J.: Hyperspectral image classification with small training sample size using superpixel-guided training sample enlargement. IEEE Trans. Geosci. Remote Sens. 57(10), 1–10 (2019)

    Article  Google Scholar 

  5. Heide, N., Frese, C., Emter, T., Petereit, J.: Real- time hyperspectral stereo processing for the generation of 3D depth information. In: 2018 IEEE International Conference on Image Processing, Proceedings, 7–10 October 2018, pp. 3299–3303. Megaron Athens International Conference Centre, Athens, Greece (2018)

    Google Scholar 

  6. Zhao, H., Xu, L., Shi, S., Jiang, H., Chen, D.: A high throughput integrated hyperspectral imaging and 3D measurement system. Sens. (Basel, Switz.) 18(4), 1068 (2018)

    Article  Google Scholar 

  7. Zhu, K., et al.: Hyperspectral light field stereo matching. IEEE Trans. Pattern Anal. Mach. Intell. 41(5), 1131–1143 (2019)

    Article  Google Scholar 

  8. Karaca, A.C., Erturk, A., Gullu, M.K., Erturk, S.: A novel panoramic stereo hyperspectral imaging system. In: 6th International Symposium on Communications, Control and Signal Processing (ISCCSP), Proceedings, Athens, Greece, 21–23 May 2014, pp. 145–148 (2014)

    Google Scholar 

  9. X-Rite: ColorChecker White Balance. https://xritephoto.com/colorchecker-white-balance. Accessed 27 Jun 2019

  10. VRmagic: D3 Intelligent Camera Platform. https://www.vrmagic.com/fileadmin/downloads/imaging/Brochures/141201_D3_platform_WEB_DP.pdf. Accessed 27 Jun 2019

  11. IMEC: Hyperspectral Imaging: Dezember 2015 Activity Update (2015)

    Google Scholar 

  12. Heikkila, J., Silven, O.: A four-step camera calibration procedure with implicit image correction. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1106–1112 (1997)

    Google Scholar 

  13. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  14. Erhardt, A.: Einführung in die Digitale Bildverarbeitung: Grundlagen, Systeme und Anwendungen. Vieweg+Teubner/GWV Fachverlage GmbH Wiesbaden, Wiesbaden (2008)

    Google Scholar 

  15. Sakamoto, T., Nakanishi, C., Hase, T.: Software pixel interpolation for digital still cameras suitable for a 32-bit MCU. IEEE Trans. Consumer Electron. 44(4), 1342–1352 (1998)

    Article  Google Scholar 

  16. Mihoubi, S., Losson, O., Mathon, B., Macaire, L.: Multispectral demosaicing using pseudo-panchromatic image. IEEE Trans. Comput. Imaging 3(4), 982–995 (2017)

    Article  MathSciNet  Google Scholar 

  17. Sun, D.-W.: Hyperspectral Imaging for Food Quality Analysis and Control, 1st edn. Academic Press, Amsterdam (2010)

    Google Scholar 

  18. Delwiche, S.R., Kim, M.S.: Hyperspectral imaging for detection of scab in wheat. In: Biological Quality and Precision Agriculture II, Boston, MA, pp. 13–20 (2000)

    Google Scholar 

  19. Cheng, X., Tao, Y., Chen, Y.R., Luo, Y.: NIR/MIR dual sensor machine vision system for online apple stem-end/calyx recognition. Trans. ASAE 46(2), 551–558 (2003)

    Article  Google Scholar 

  20. Polder, G., van der Heijden, G.W.A.M., Young, I.T.: Spectral image analysis for measuring ripeness of tomatoes. Trans. ASAE 45(4), 1155–1161 (2002)

    Article  Google Scholar 

  21. Lu, R.: Detection of bruises on apples using near-infrared hyperspectral imaging. Trans. ASAE 46(2), 523 (2003)

    Google Scholar 

  22. Tanriverdi, F., Schuldt, D., Thiem, J.: Hyperspectral imaging: color reconstruction based on medical data. In: IEEE EMBS Conference on Biomedical Engineering and Sciences (2018)

    Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support of Avicenna-Studienwerk e.V. and University of Applied Sciences and Arts Dortmund for the PhD scholarships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatih Tanriverdi , Dennis Schuldt or Jörg Thiem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tanriverdi, F., Schuldt, D., Thiem, J. (2019). Dual Snapshot Hyperspectral Imaging System for 41-Band Spectral Analysis and Stereo Reconstruction. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2019. Lecture Notes in Computer Science(), vol 11845. Springer, Cham. https://doi.org/10.1007/978-3-030-33723-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33723-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33722-3

  • Online ISBN: 978-3-030-33723-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics