Abstract
This paper deals with a novel hyperspectral imaging system based on a stereo camera arrangement. The spectral specifications of both cameras are complement to each other. Therefore, a total of 41 bands are available for the visual and near infrared range. The combined usage of different HSI cameras allow 3D reconstruction as well as the spectral analysis. For each pixel, there are 41 features that describe the location with spectral information. A geometrical alignment, radiometric calibration and normalization is needed to perform accurate measurements. Furthermore, the developed system will be evaluated with regard to its applicability for medical assistance functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mahmoud, N., et al.: Live tracking and dense reconstruction for hand-held monocular endoscopy. IEEE Trans. Med. Imaging 38, 79–89 (2018)
Schuldt, D., Tanriverdi, F., Thiem, J.: Performance of stereo matching algorithms in 3D endoscopy. Biomed. Eng./Biomedizinische Technik 63(s1), 50 (2018)
Kumar, N., et al.: Hyperspectral tissue image segmentation using semi-supervised NMF and hierarchical clustering. IEEE Trans. Med. Imaging 38(5), 1304–1313 (2019)
Zheng, C., Wang, N., Cui, J.: Hyperspectral image classification with small training sample size using superpixel-guided training sample enlargement. IEEE Trans. Geosci. Remote Sens. 57(10), 1–10 (2019)
Heide, N., Frese, C., Emter, T., Petereit, J.: Real- time hyperspectral stereo processing for the generation of 3D depth information. In: 2018 IEEE International Conference on Image Processing, Proceedings, 7–10 October 2018, pp. 3299–3303. Megaron Athens International Conference Centre, Athens, Greece (2018)
Zhao, H., Xu, L., Shi, S., Jiang, H., Chen, D.: A high throughput integrated hyperspectral imaging and 3D measurement system. Sens. (Basel, Switz.) 18(4), 1068 (2018)
Zhu, K., et al.: Hyperspectral light field stereo matching. IEEE Trans. Pattern Anal. Mach. Intell. 41(5), 1131–1143 (2019)
Karaca, A.C., Erturk, A., Gullu, M.K., Erturk, S.: A novel panoramic stereo hyperspectral imaging system. In: 6th International Symposium on Communications, Control and Signal Processing (ISCCSP), Proceedings, Athens, Greece, 21–23 May 2014, pp. 145–148 (2014)
X-Rite: ColorChecker White Balance. https://xritephoto.com/colorchecker-white-balance. Accessed 27 Jun 2019
VRmagic: D3 Intelligent Camera Platform. https://www.vrmagic.com/fileadmin/downloads/imaging/Brochures/141201_D3_platform_WEB_DP.pdf. Accessed 27 Jun 2019
IMEC: Hyperspectral Imaging: Dezember 2015 Activity Update (2015)
Heikkila, J., Silven, O.: A four-step camera calibration procedure with implicit image correction. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1106–1112 (1997)
Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)
Erhardt, A.: Einführung in die Digitale Bildverarbeitung: Grundlagen, Systeme und Anwendungen. Vieweg+Teubner/GWV Fachverlage GmbH Wiesbaden, Wiesbaden (2008)
Sakamoto, T., Nakanishi, C., Hase, T.: Software pixel interpolation for digital still cameras suitable for a 32-bit MCU. IEEE Trans. Consumer Electron. 44(4), 1342–1352 (1998)
Mihoubi, S., Losson, O., Mathon, B., Macaire, L.: Multispectral demosaicing using pseudo-panchromatic image. IEEE Trans. Comput. Imaging 3(4), 982–995 (2017)
Sun, D.-W.: Hyperspectral Imaging for Food Quality Analysis and Control, 1st edn. Academic Press, Amsterdam (2010)
Delwiche, S.R., Kim, M.S.: Hyperspectral imaging for detection of scab in wheat. In: Biological Quality and Precision Agriculture II, Boston, MA, pp. 13–20 (2000)
Cheng, X., Tao, Y., Chen, Y.R., Luo, Y.: NIR/MIR dual sensor machine vision system for online apple stem-end/calyx recognition. Trans. ASAE 46(2), 551–558 (2003)
Polder, G., van der Heijden, G.W.A.M., Young, I.T.: Spectral image analysis for measuring ripeness of tomatoes. Trans. ASAE 45(4), 1155–1161 (2002)
Lu, R.: Detection of bruises on apples using near-infrared hyperspectral imaging. Trans. ASAE 46(2), 523 (2003)
Tanriverdi, F., Schuldt, D., Thiem, J.: Hyperspectral imaging: color reconstruction based on medical data. In: IEEE EMBS Conference on Biomedical Engineering and Sciences (2018)
Acknowledgement
The authors gratefully acknowledge the financial support of Avicenna-Studienwerk e.V. and University of Applied Sciences and Arts Dortmund for the PhD scholarships.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Tanriverdi, F., Schuldt, D., Thiem, J. (2019). Dual Snapshot Hyperspectral Imaging System for 41-Band Spectral Analysis and Stereo Reconstruction. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2019. Lecture Notes in Computer Science(), vol 11845. Springer, Cham. https://doi.org/10.1007/978-3-030-33723-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-33723-0_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33722-3
Online ISBN: 978-3-030-33723-0
eBook Packages: Computer ScienceComputer Science (R0)