Abstract
This paper describes the first study on whether human facial attractiveness can be used as a soft biometric feature. By using comparative soft biometrics, with ranking and classification, we show that attractiveness does have the capability to be used within a recognition framework using crowdsourcing, by using groups from the LFW dataset. In this initial study, the Elo rating system is employed to rank subjects’ facial attractiveness based on the comparative descriptions. We will show how facial attractiveness attributes can be exploited for identification purposes and can be described in the same way and can add to performance of comparative soft biometrics attributes. Attractiveness does not appear to be as powerful as gender for recognition. It does however increase recognition capability and it is interesting that a perceptual characteristic can improve performance in this way.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gonzalez-Sosa, E., Fierrez, J., Vera-Rodriguez, R., Alonso-Fernandez, F.: Facial soft biometrics for recognition in the wild: recent works, annotation, and COTS evaluation. IEEE TIFS 13(8), 2001–2014 (2018)
Zhang, H., Beveridge, J.R., Draper, B.A., Phillips, P.J.: On the effectiveness of soft biometrics for increasing face verification rates. CVIU 137, 50–62 (2015)
Reid, D., Nixon, M., Stevenage, S.: Soft biometrics; human identification using comparative descriptions. IEEE TPAMI 36(6), 1216–1228 (2013)
Tome, P., Fierrez, J., Vera-Rodriguez, R., Nixon, M.: Soft biometrics and their application in person recognition at a distance. IEEE TIFS 9(3), 464–475 (2014)
Arigbabu, O., Ahmad, S., Adnan, W., Yussof, S.: Recent advances in facial soft biometrics. Vis. Comput. 31(5), 513–525 (2014)
Nixon, M., Correia, P., Nasrollahi, K., Moeslund, T., Hadid, A., Tistarelli, M.: On soft biometrics. Pattern Recogn. Lett. 68, 218–230 (2015)
Parikh, D., Grauman, K.: Relative attributes. In: IEEE ICCV, pp. 503–510 (2011)
Almudhahka, N., Nixon, M., Hare, J.: Semantic face signatures: recognizing and retrieving faces by verbal descriptions. IEEE TIFS 13(3), 706–716 (2018)
Samangooei, S., Guo, B., Nixon, M.: The use of semantic human description as a soft biometric. In: Proceedings of the BTAS, pp. 1–7 (2008)
Martinho-Corbishley, D., Nixon, M., Carter, J.N.: Super-fine attributes with crowd prototyping. IEEE TPAMI 41(6), 1486–1500 (2018)
Jaha, E., Nixon, M.: From clothing to identity: manual and automatic soft biometrics. IEEE TIFS 11(10), 2377–2390 (2016)
Shepherd, J., Ellis, H.: The effect of attractiveness on recognition memory for faces. Am. J. Psychol. 86(3), 627 (1973)
Kagian, A., Dror, G., Leyvand, T., Cohen-Or, D., Ruppin, E.: A humanlike predictor of facial attractiveness. In: NIPS, pp. 1–8 (2007)
Liu, S., Fan, Y., Samal, A., Guo, Z.: Advances in computational facial attractiveness methods. Multimed. Tools Appl. 75(23), 16633–16663 (2016)
Chen, F., Zhang, D.: A benchmark for geometric facial beauty study. In: Zhang, D., Sonka, M. (eds.) ICMB 2010. LNCS, vol. 6165, pp. 21–32. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13923-9_3
Thornhill, R., Gangestad, S.: Facial attractiveness. Trends Cognit. Sci. 3(12), 452–460 (1999)
Cunningham, M.: Measuring the physical in physical attractiveness: quasi-experiments on the sociobiology of female facial beauty. J. Pers. Soc. Psychol. 50(5), 925–935 (1986)
Eisenthal, Y., Dror, G., Ruppin, E.: Facial attractiveness: beauty and the machine. Neural Comput. 18, 119–142 (2006)
Xie, D., Liang, L., Jin, L., Xu, J., Li, M.: SCUT-FBP: a benchmark dataset for facial beauty perception. In: Proceedings of the IEEE SMC, pp. 1821–1826 (2015)
Rhodes, G.: The evolutionary psychology of facial beauty. Annu. Rev. Psychol. 57, 199–226 (2006)
Huang, G., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical report 07-49, University of Massachusetts Amherst (2007)
Welinder, P., Perona, P.: Online crowdsourcing: rating annotators and obtaining cost-effective labels. In: Proceedings of the IEEE CVPR Workshops, pp. 25–32 (2010)
Guo, B., Nixon, M.: Gait feature subset selection by mutual information. IEEE TSMC A 39(1), 36–46 (2009)
Pudil, P., Novovičová, J., Kittler, J.: Floating search methods in feature selection. Pattern Recogn. Lett. 15(11), 1119–1125 (1994)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Alnamnakani, M., Mahmoodi, S., Nixon, M. (2019). On the Potential for Facial Attractiveness as a Soft Biometric. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2019. Lecture Notes in Computer Science(), vol 11845. Springer, Cham. https://doi.org/10.1007/978-3-030-33723-0_42
Download citation
DOI: https://doi.org/10.1007/978-3-030-33723-0_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33722-3
Online ISBN: 978-3-030-33723-0
eBook Packages: Computer ScienceComputer Science (R0)