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Abstract. The automotive industry is currently focusing on automa-
tion in their vehicles, and perceiving the surroundings of an automobile
requires the ability to detect and identify objects, events and persons, not
only from the outside of the vehicle but also from the inside of the cabin.
This constitutes relevant information for defining intelligent responses
to events happening on both environments. This work presents a new
method for in-vehicle monitoring of passengers, specifically the task of
real-time face detection in thermal images, by applying transfer learning
with YOLOv3. Using this kind of imagery for this purpose brings some
advantages, such as the possibility of detecting faces during the day and
in the dark without being affected by illumination conditions, and also
because it’s a completely passive sensing solution. Due to the lack of
suitable datasets for this type of application, a database of in-vehicle
images was created, containing images from 38 subjects performing dif-
ferent head poses and at varying ambient temperatures. The tests in our
database show an AP50 of 99.7% and an AP of 78.5%.
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1 Introduction

In an autonomous driving environment, solutions for interior vehicle monitoring
become a necessity, namely to monitor occupants and car interior, tasks that are
mainly associated to the driver in modern transportation systems.

A possible approach for in-vehicle interior sensing considers the visible do-
main, namely the use of RGB cameras. These images greatly depend on external
conditions, namely light. This introduces a considerable limitation if we aim to
monitor the vehicle during the 24 hours of a day. With this in mind, other
modalities are being explored, that can be used independently or in conjunc-
tion. An example is near-infrared (NIR), robust to lack of lighting but requires
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a dedicated source of IR light and filters and is also sensible to different lens
exposures [6]. The modality we explore in this document, thermal images, is a
passive solution robust to any external light conditions.

Face detection is an object detection task with the specific goal of detecting
faces in images. It is the first and one essential step for other more complex
tasks, such as face verification and person identification, and so it can be used
in many areas such as bio-metrics, security and entertainment.

In the visible domain, traditional approaches include the Viola-Jones frame-
work [10], developed in 2004 and capable of performing in real-time. In the
thermal domain, researchers were able to enhance and apply the same method
to thermal images [1]. They employed and tested different types of features and
concluded that the performance of the system was better using LBP features [7].
Recently, deep convolutional neural networks (CNNs) are being used to improve
those results. In [4], transfer learning using a pre-trained Inception model [9]
on visible images was successfully applied to thermal face detection, achieving a
Positive Predictive Value (PPV) of 99.5%.

2 Dataset

In order to have training and test data for the algorithms described in this doc-
ument, and due to the lack of labeled and suitable datasets for this application
in the thermal domain, a database was created by capturing images inside a
vehicle. This dataset is not limited to data important for the purposes of this
paper, but also includes subjects performing activities that are relevant for the
development of other monitoring algorithms.

The setup consisted of a camera operating both in the infrared thermal and
in the visible light spectrum. For this purpose, the FLIR ONE Pro camera was
chosen, mainly due to the fact that it combines both modalities in a small device
and ensures calibration between frames. This camera has a thermal resolution
of 160x120 and an RGB resolution of 1440x1080, capturing frames at a rate
of 8.7 per second with a FOV of 55o ×43o ±1. The thermal sensor operates
in the 8 – 14µm waveband, measuring temperatures between -20oC and 400oC
with a thermal sensitivity of 0.15oC. The camera was placed in front of the
passenger using a folding arm, connected via USB to a Linux-running machine
(NVIDIA Jetson TX2). Since the camera was designed to be controlled with a
smartphone, a driver had to be developed to connect it to an embedded device,
and also to extract raw temperature values provided by the capturing device
with the highest thermal resolution (14bit). The described setup can be seen in
Fig. 1.

The participants were asked to perform some specific actions and activities,
namely head movements in multiple axis, simulating facial expressions, simu-
lating fatigue, wearing glasses, smoking, entering the vehicle and leaving the
vehicle. Additionally, in the middle of the session, the air conditioning system
of the vehicle was adjusted to change the cabin temperature.
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Fig. 1. The recording setup.

In total, the database contains recordings of 38 subjects. In terms of gender
distribution, data was captured from 33 males and 5 female subjects of white
ethnicity. The average age of the recorded population is 28.8 with standard
deviation of 10.1 years, and the average height is 1.76m with a standard deviation
of 0.10m. Regarding hair size, there were 3 bald subjects, 27 with short hair, 3
with medium hair and 5 with long hair. Furthermore, 63% of the subjects had
a beard and 66% had a mustache.

In total, the database contains 87286 frames, where 5361 images were auto-
labeled with facial bounding boxes using an RGB face detetor [11] and manually
filtered to remove incorrect labels generated by the automatic labeling process.
Example images can be seen in Fig. 2.

3 Implementation

Our face detection algorithm is based on the YOLOv3 [8] real-time general object
detector. The feature extractor of YOLOv3 is pre-trained on a large amount of
visible images from ImageNet [2] and the full object detection framework is then
trained on COCO [5] database. In order to perform face detection in thermal
images, we take advantage of those pre-trained weights and adapt them to our
scenario where the input is a single-channel temperature matrix and the output
is the bounding boxes of all faces. We studied and compared different ways of
adapting the network to our input, which are further discussed in this article. In
all our experiments, the pre-trained were loaded and all the layers were trained.

In order to retrain the network, not only facial images are required, but also
negatives. In the context of thermal imaging, these usually are high-temperature
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Fig. 2. Example images taken (a) in a ”cold” environment and (b) in a ”hot” envi-
ronment. Additionally, ground truth labels of the dataset are shown (facial landmarks,
facial expression and glasses usage).

objects that could be confused with our target class. Most of the databases of
infrared images have a clean background (cold) and are not suitable for good
learning of negatives. Therefore, we collected and hand-labeled a total of 2075
additional images (some including faces and others not) in multiple scenarios,
but ensuring that no appearing subject is included in the data reserved for
testing. These images, together with the images from the database described in
section 2, were used as training data in our experiments. The validation of all
models reported in this section was performed using the Monte Carlo method
for subject-wise cross-validation (leave-group-out validation, with a group size
of 8) and only the best model was chosen to be tested on the test set.

For the pre-trained output to match the objective of face detection, the net-
work should be adjusted so that each bounding box only predicts one class.
Additionally, since facial bounding boxes have a certain aspect ratio, we run
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the K-means algorithm to cluster the sizes of all faces in the dataset and gener-
ate anchor boxes that are better tuned for the use case, unlike the pre-trained
version of YOLOv3 which is prepared to receive multiple classes of objects of
varying size.

3.1 Model selection

Since the input of YOLOv3 is the three RGB channels of visible images, our
single-channel thermal input needs to be adapted. We have experimented and
compared different ways of performing this. One possible method is to apply a
color palette to the input, so that the number of channels matches the input of
the network. We chose for this purpose a palette where the hottest pixels are
orange, yellow or white, similar to the facial skin color. The expectation is that
it better mimics the colors of the pre-trained version of YOLO in RGB images.
This model achieved an AP50 of 99.64% and an AP of 78.41% in the test set.

Our next experiment was to feed the network directly with the thermal im-
age, without preprocessing it with a color palette. A disadvantage of the previous
model is that color mapping the temperatures does not introduce any new infor-
mation when compared to an input composed solely of the pixel temperatures.
Therefore, we experimented tripling the single-channel input in order to match
the number of input channels of the pre-trained network, without applying any
palette or making any other change to it. We take advantage of the fact that all
the images in our dataset contain temperature information, and we do not per-
form any kind of equalization to avoid losing that important data, considering
that the facial temperatures have a limited expected range [3]. This experiment
improved the accuracy of the model when compared to the initial attempt with
YOLOv3 using a color palette, resulting in an AP50 of 99.89% and an AP of
79.21%.

To avoid the need of tripling the input, we experimented passing only one
channel and making the necessary adjustments to the network. This channel
corresponds to the temperature matrix captured by the thermal camera. In order
to prepare the network for the new input, it is important to understand how
the first convolutional layer of YOLOv3 works and how it can be adapted to
accept the new input. The output of a convolution layer is visualized in Fig. 3.
In YOLOv3, the first layer contains 32 filters, also known as kernels, of size
3x3, which means that each value in the output convolved feature is a linear
combination of the pixel values in a 3x3 square around it. A kernel is therefore
defined by 9 trainable weights and, considering 3 color channels, there are 32∗3 =
96 kernels.

Since the input shape suffered a reduction in the number of channels from 3 to
1, we discarded the weights corresponding to the kernels of the first convolutional
layer and initialized them with random values. Comparing the results of this
model to the triple thermal input version, we noticed a decrease in AP50 to
99.59%, and in AP to 76.28%, but also a decrease of 6ms in inference time, due
to the smaller number of input channels.
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Fig. 3. Convolutional layer connected to RGB input.

To improve those values, we tried to take advantage of the old weights of the
convolutional kernels of the first layer. Since there are 3 kernels per filter (one
for each color channel), it is necessary to properly combine the weights of those
kernels into one. Convolutional layers calculate the output values of each filter
according to the formula

hnj = max(0,

K∑
k=1

hn−1k ∗ wn
kj), (1)

where h is a feature map, n is the index of the convolutional layer in the
model, j is the index of a filter, K is the total size of the kernel and w is a
weight matrix. Note that the output of a convolutional layer for a multi-channel
input is related to the sum of the convolution operation on each channel, and
not to its mean. For this reason, we sum the weights of each kernel for each filter
to adapt from a multi-channel to a single-channel input, in an attempt to feed
similar data to the rest of the network, and therefore taking as much advantage
as possible from the previously learned weights. This resulted in an AP50 of
99.75%, and AP of 78.26%.

3.2 Optimizing for speed

In the context of this paper, we are not very interested in detecting small objects,
as we assume a minimum size of the faces of the vehicle occupants and distance
to the camera (<60cm). Therefore, it is possible that parts of the network are
not contributing to the overall accuracy, because we do not have small objects
in our dataset. To test this hypothesis, we grabbed the weights of our single-
channel predictor with adapter weights and pruned part of the network. The
high-level architecture of YOLOv3 is represented in Fig. 4.
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Fig. 4. High-level architecture of YOLOv3. Note that its output is generated from 3
different parts of the network.

The first output of YOLOv3 is given by the 82nd layer and the second output
(medium-sized objects) is given by the 94th layer, so the rest of the network can
be eliminated for our purposes. Inferences with this pruned model result in a
similar accuracy, scoring minus 0.03% in AP50 and minus 0.02% in AP. Indeed,
the last few layers of the network are not a high contribution to the prediction
accuracy. The big advantage of making this conclusion is that we can predict in
the pruned model, which means a considerable improvement in terms of speed
with a low sacrifice in accuracy. In our implementation, the full model takes
35ms to predict one frame of resolution 416x416, while the pruned one only
takes 25ms, which means we get a reduction of 29% in inference time. We also
experimented ignoring the output of the second output layer, but the results
deteriorated.

3.3 Training without last output

Since we have concluded that the last layer of YOLOv3 is not helpful in our use
case, we were able to increase its speed at inference time, but it is also possible
to totally prune it during training so that it no longer contributes to the total
loss (and decreasing training times). The loss function used for training of the
model is defined in equation 2.
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As in previous versions of YOLO, the loss function takes into account the
correctness of the center and dimensions of the predicted bounding boxes, the
confidence given to objects, the confidence when there are no objects and the
correctness of classification when there is an object. The changes with version
3 of YOLO are in the way the last three components of the loss function are
calculated, using logistic regression instead of the previous squared difference,
and the enclosing sum (

∑L
l=0) that corresponds to the output of each layer of

the feature pyramid network that follows the feature extractor (Fig. 4). This
sum is responsible for adding the individual losses of each output at each scale.
Therefore, if we decrease the number of output layers, L, from 3 to 2, we are
effectively excluding the loss of the last output in the overall loss function. Our
experiments show a reduction in training times of around 26%, but a decrease
in AP50 of 2.3% and 4.1% in AP. For this reason, we decided not to exclude the
last layer from the training process.

3.4 Comparison of results

Table 2 presents a comparison of results between the different transfer learning
techniques experimented, each being briefly described in Table 1. In terms of in-
ference time, models C and D are 6ms faster than the others, due to the smaller
number of input channels. In accuracy, model C has the worst performance,
which leads to the conclusion that adapting the weights to different images is bet-
ter than random initialization. The results we obtained during cross-validation
were similar, and we decided to choose model D due to the good compromise
between speed and accuracy. Then, for testing, we used the model D that per-
formed best during cross-validation, reaching an AP50 of 99.71% and an AP of
78.52%. A prediction example is provided in Fig. 5.

After manual observation of the output of the face detector, it is noticeable
that the score on the AP metric is limited by the fact that the labeling process
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Model Description

A YoloV3 with palette

B YoloV3 grayscale with 3 channels

C YoloV3 grayscale with 1 channel and random weights

D YoloV3 grayscale with 1 channel and reused weights
Table 1. Model description

Model AP25 AP50 AP75 AP Inference time

A 99.71% 99.60% 97.16% 78.38% 31ms
B 99.89% 99.78% 97.34% 79.20% 31ms
C 99.78% 99.52% 95.37% 76.25% 25ms
D 99.85% 99.75% 97.33% 78.25% 25ms

best D 99.85% 99.71% 97.14% 78.52% 25ms
Table 2. Mean of test results obtained with different transfer learning techniques,
predicting without the last output layer. The last row reports the test score of the
model D that performed best during cross-validation.

was automatic and the face detector used for RGB images sometimes produces
bounding boxes with slightly incorrect boundaries. For this reason, although the
face detector reaches 97.14% in AP75, it is harder for the algorithm to exactly
match the ground truth and reach such values when the IoU (Intersection over
Union) threshold is higher.

4 Conclusions

Our results show that it is possible to develop an accurate face detector in ther-
mal images using transfer learning with neural networks developed for RGB
images. Furthermore, one possible reason to why the detector does not score
higher in the AP metric is the fact that the ground truth information is gen-
erated automatically and the limits of the bounding boxes are not perfectly
defined. Overall, we argue that our work compares ways of transferring existing
algorithms from RGB to thermal and demonstrates good results in a vehicle
scenario.

Further work can be considered. Model A uses a color palette to map the
temperatures to different colors and there is the possibility of experimenting
different palettes and see how they impact the prediction accuracy. Additionally,
at the moment, the face detection algorithm here presented for thermal images
relies on pre-trained weights fitted to RGB images from ImageNet and adapted
to work with thermal images. Instead, we could retrain the whole YOLOv3
neural network with the grayscale version of those images, so that the network
is prepared from scratch to accept input in a single-channel format, therefore
removing the necessity of readjusting the weights from a three-color system to
single-color. Furthermore, experiments can be conducted to understand how the
input resolution affects the accuracy of the predictor, and what is the expected
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Fig. 5. Example of a successful face detection in a very hot vehicle interior. The red
bounding box represents the ground truth and the green box refers to the prediction
of our model, together with its confidence value.

trade-off between inference speed and quality of predictions. Moreover, in the
context of this work we focused on a maximum distance of ∼ 60cm, which means
the algorithm is not prepared to handle small objects. Larger distances could
be considered by using scale augmentation or adding to the database images of
faces further from the camera.
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7. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures
with classification based on feature distributions. Pattern Recognition 29(1), 51–59
(1996). https://doi.org/10.1016/0031-3203(95)00067-4

8. Redmon, J., Farhadi, A.: YOLOv3: An Incremental Improvement (2018).
https://doi.org/10.1109/CVPR.2017.690

9. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the In-
ception Architecture for Computer Vision. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. pp. 2818–2826 (2015).
https://doi.org/10.1109/CVPR.2016.308

10. Viola, P., Jones, M.J.: Robust Real-Time Face Detection. In-
ternational Journal of Computer Vision 57(2), 137–154 (2004).
https://doi.org/10.1023/B:VISI.0000013087.49260.fb

11. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint Face Detection and Alignment Us-
ing Multitask Cascaded Convolutional Networks. IEEE Signal Processing Letters
23(10), 1499–1503 (2016). https://doi.org/10.1109/LSP.2016.2603342


