Skip to main content

Prediction of Student Attrition Using Machine Learning

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11835))

Included in the following conference series:

Abstract

Student attrition is one of the most important problems for any school, being it private or public.

In public education, a high attrition rate reflects poorly in the school, as it is wasting public taxes on students that do not finish their majors. In private education, it means the school revenue decreases considerably. Much work has been done on predicting churn rates in the Telecommunication industry, in this work we use similar techniques to predict churn rates in education.

We explore the data extensively and see the possible correlations between attrition and variables like entrance examination, place where the students are from and grades up to the point of abandonment of the major.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Examen nacional de ingreso. http://www.ceneval.edu.mx/exani-ii. Accessed 24 June 2019

  2. Sistema de informacion de desarrollo social. http://www.sideso.cdmx.gob.mx/index.php?id=11. Accessed 24 June 2019

  3. ANUIES: Visión y acción 2030: Propuesta de la anuies para renovar la educación superior en méxico. Asociación Nacional de Universidades e Instituciones de Educación Superior (2018)

    Google Scholar 

  4. Dekker, G.W., Pechenizkiy, M., Vleeshouwers, J.M.: Predicting students drop out: a case study. In: International Working Group on Educational Data Mining (2009)

    Google Scholar 

  5. Lagunas, J.R., Vázquez, J.M.H.: La deserción escolar universitaria en méxico. la experiencia de la universidad autónoma metropolitana. Revista Electrónica “Actualidades Investigativas en Educación" 8(1), 1–30 (2008)

    Google Scholar 

  6. Ma, J., Pender, M., Welch, M.: Education pays 2016: the benefits of higher education for individuals and society. Trends in higher education series. College Board (2016)

    Google Scholar 

  7. OECD: Education at a Glance 2018 (2018). https://doi.org/10.1787/eag-2018-en. https://www.oecd-ilibrary.org/content/publication/eag-2018-en

  8. OECD: Higher Education in Mexico (2019)

    Google Scholar 

  9. SEP: Principales Cifras 2017–2018. Secretaria de Educacion Publica (2019)

    Google Scholar 

  10. Stinebrickner, T.R., Stinebrickner, R.: The effect of credit constraints on the college drop-out decision a direct approach using a new panel study. Working Paper 13340, National Bureau of Economic Research, August 2007. https://doi.org/10.3386/w13340. http://www.nber.org/papers/w13340

  11. Anuario Educación Superior: Anuarios estadisticos de educacion superior (2019). http://www.anuies.mx/informacion-y-servicios/informacion-estadistica-de-educacion-superior/anuario-estadistico-de-educacion-superior

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon Palafox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aguilar-Gonzalez, S., Palafox, L. (2019). Prediction of Student Attrition Using Machine Learning. In: Martínez-Villaseñor, L., Batyrshin, I., Marín-Hernández, A. (eds) Advances in Soft Computing. MICAI 2019. Lecture Notes in Computer Science(), vol 11835. Springer, Cham. https://doi.org/10.1007/978-3-030-33749-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33749-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33748-3

  • Online ISBN: 978-3-030-33749-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics