Skip to main content

Clusterized KNN for EEG Channel Selection and Prototyping of Lower Limb Joint Torques

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11835))

Included in the following conference series:

  • 1606 Accesses

Abstract

In this paper, a method for automatic channel selection of EEG signals acquired during the execution of lower limb movements is presented; for this method the hip and knee joint torques are measured. The method is based on maximizing both the percentage of prototypes extracted and the relative dispersion of its respective torques using a genetic algorithm. The prototyping is made with clusterized KNN, a proposed modification of the K-nearest neighbors algorithm, and the dispersion is computed as the ratio of interquartile ranges (IQR) between original and resulting torques. Results show that frequent channels are consistent with those known to be activated during motor tasks and that additional channels, needed for extracting relevant information from the data, vary from subject to subject. Extracted data can be used as new inputs for later regression tasks and for further analysis in order to characterize neural processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 420–434. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44503-X_27

    Chapter  Google Scholar 

  2. Ball, T., Kern, M., Mutschler, I., Aertsen, A., Schulze-Bonhage, A.: Signal quality of simultaneously recorded invasive and non-invasive EEG. NeuroImage 46(3), 708–716 (2009). https://doi.org/10.1016/j.neuroimage.2009.02.028

    Article  Google Scholar 

  3. Centers for Disease Control and Prevention (CDC): Disability and functioning (noninstitutionalized adults aged 18 and over) (2016). Accessed May 2019

    Google Scholar 

  4. Department of Social Development (SEDESOL): Diagnosis on the situation of people with disabilities in Mexico (2016), Accessed May 2019

    Google Scholar 

  5. Ditterich, J.: Evidence for time-variant decision making. Eur. J. Neurosci. 24(12), 3628–3641 (2006). https://doi.org/10.1111/j.1460-9568.2006.05221.x

    Article  Google Scholar 

  6. Druckmann, S., Chklovskii, D.B.: Neuronal circuits underlying persistent representations despite time varying activity. Current Biol. 22(22), 2095–2103 (2012). https://doi.org/10.1016/j.cub.2012.08.058

    Article  Google Scholar 

  7. Duun-Henriksen, J., Kjaer, T.W., Madsen, R.E., Remvig, L.S., Thomsen, C.E., Sorensen, H.B.D.: Channel selection for automatic seizure detection. Clin. Neurophysiol. 123(1), 84–92 (2012). https://doi.org/10.1016/j.clinph.2011.06.001

    Article  Google Scholar 

  8. Ferree, T.C., Luu, P., Russell, G.S., Tucker, D.M.: Scalp electrode impedance, infection risk, and EEG data quality. Clin. Neurophysiol. 112(3), 536–544 (2001). https://doi.org/10.1016/s1388-2457(00)00533-2

    Article  Google Scholar 

  9. Gonzalez, A., Nambu, I., Hokari, H., Wada, Y.: EEG channel selection using particle swarm optimization for the classification of auditory event-related potentials. Sci. World J. 2014, 1–11 (2014). https://doi.org/10.1155/2014/350270

    Article  Google Scholar 

  10. Hechenbichler, K., Schliep, K.: Weighted k-nearest-neighbor techniques and ordinal classification (2004). https://doi.org/10.5282/ubm/epub.1769

  11. van den Heuvel, M.P., Pol, H.E.H.: Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20(8), 519–534 (2010). https://doi.org/10.1016/j.euroneuro.2010.03.008

    Article  Google Scholar 

  12. Holland, J.: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Adaptation in Natural and Artificial Systems, 1st edn. The University of Michigan, Ann Arbor (1975)

    MATH  Google Scholar 

  13. Jahanshahi, M., Hallett, M.: The Bereitschaftspotential: Movement-Related Cortical Potentials. Springer, New York (2003). https://doi.org/10.1007/978-1-4615-0189-3

    Book  Google Scholar 

  14. Jorge, J., Grouiller, F., Gruetter, R., van der Zwaag, W., Figueiredo, P.: Towards high-quality simultaneous EEG-fMRI at 7T: detection and reduction of EEG artifacts due to head motion. NeuroImage 120, 143–153 (2015). https://doi.org/10.1016/j.neuroimage.2015.07.020

    Article  Google Scholar 

  15. Kelleher, J.D., Mac Namee, B., D’arcy, A.: Fundamentals of Machine Learning for Predictive Data Analytics Algorithms Worked Examples and Case Studies. MIT Press, Cambridge (2015)

    MATH  Google Scholar 

  16. Kumar, T.: Solution of linear and non linear regression problem by k nearest neighbour approach: by using three sigma rule. In: 2015 IEEE International Conference on Computational Intelligence & Communication Technology. IEEE (2015). https://doi.org/10.1109/cict.2015.110

  17. Lal, T., et al.: Support vector channel selection in BCI. IEEE Trans. Biomed. Eng. 51(6), 1003–1010 (2004). https://doi.org/10.1109/tbme.2004.827827

    Article  Google Scholar 

  18. Leistritz, L., Schiecke, K., Astolfi, L., Witte, H.: Time-variant modeling of brain processes. Proc. IEEE 104(2), 262–281 (2016). https://doi.org/10.1109/jproc.2015.2497144

    Article  Google Scholar 

  19. Nakagome, S., Luu, T.P., Brantley, J.A., Contreras-Vidal, J.L.: Prediction of EMG envelopes of multiple terrains over-ground walking from EEG signals using an unscented Kalman filter. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, October 2017. https://doi.org/10.1109/smc.2017.8123116

  20. Pedregosa, F., et al.: Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011). http://dl.acm.org/citation.cfm?id=1953048.2078195

    MathSciNet  MATH  Google Scholar 

  21. Presacco, A., Goodman, R., Forrester, L., Contreras-Vidal, J.L.: Neural decoding of treadmill walking from noninvasive electroencephalographic signals. J. Neurophysiol. 106(4), 1875–1887 (2011). https://doi.org/10.1152/jn.00104.2011

    Article  Google Scholar 

  22. Raichle, M.E.: The restless brain. Brain Connect. 1(1), 3–12 (2011). https://doi.org/10.1089/brain.2011.0019

    Article  Google Scholar 

  23. Ramos-Murguialday, A., Birbaumer, N.: Brain oscillatory signatures of motor tasks. J. Neurophysiol. 113(10), 3663–3682 (2015). https://doi.org/10.1152/jn.00467.2013

    Article  Google Scholar 

  24. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition, pp. 159–165 (1990). https://doi.org/10.1016/b978-0-08-051584-7.50016-4

    Chapter  Google Scholar 

  25. Vázquez, R.R., Vélez-Pérez, H., Ranta, R., Dorr, V.L., Maquin, D., Maillard, L.: Blind source separation, wavelet denoising and discriminant analysis for EEG artefacts and noise cancelling. Biomed. Signal Process. Control 7(4), 389–400 (2012). https://doi.org/10.1016/j.bspc.2011.06.005

    Article  Google Scholar 

  26. Zhang, Y., Prasad, S., Kilicarslan, A., Contreras-Vidal, J.L.: Multiple kernel based region importance learning for neural classification of gait states from EEG signals. Front. Neurosci. 11, 170 (2017). https://doi.org/10.3389/fnins.2017.00170

    Article  Google Scholar 

  27. Zwillinger, D., Kokoska, S.: CRC Standard Probability and Statistics Tables and Formulae. CRC Press, Boca Raton (1999)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucero Alvarado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alvarado, L., Quiroz, G., Rodriguez-Liñan, A., Torres-Treviño, L. (2019). Clusterized KNN for EEG Channel Selection and Prototyping of Lower Limb Joint Torques. In: Martínez-Villaseñor, L., Batyrshin, I., Marín-Hernández, A. (eds) Advances in Soft Computing. MICAI 2019. Lecture Notes in Computer Science(), vol 11835. Springer, Cham. https://doi.org/10.1007/978-3-030-33749-0_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33749-0_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33748-3

  • Online ISBN: 978-3-030-33749-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics