Abstract
This paper presents the design and analysis of different controller schemes for a three wheeled omnidirectional robot, that is, a robot which can be driven by the control of three independent velocity variables: over \( x \) and \( y \) linear directions and a rotational direction to perform complex motions. Conventional Proportional, Proportional-Integral, Fuzzy and Fuzzy PI controllers are designed based on the kinematic behavior of the holonomic mobile omnidirectional robot. Velocities of the Robot are estimated by using an odometer module. Also, the implementation performed in Simulink tool of Matlab of the different schemes is presented. The control objective for these designs is to drive the two linear command velocities of the robot and to do it goes from an initial position to a final position without obstacles. Finally, a comparative analysis of the studied controllers in time and distance is performed for determining the performance using a Robotino simulation tool of Festo, which provides an uncertainty environment for the robot control.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kermorgant, O.: A magnetic climbing robot to perform autonomous welding in the shipbuilding industry. Robot. Comput.-Integr. Manuf. 53, 178–186 (2018)
Garnier, S., Subrin, K., Arevalo-Siles, P., Caverot, G., Furet, B.: Mobile robot stability for complex tasks in naval industries. Procedia CIRP 72, 297–302 (2018)
Landscheidt, S., Kans, M., Winroth, M.: Opportunities for robotic automation in wood product industries: the supplier and system integrators’ perspective. Procedia Manuf. 11, 233–240 (2017)
Phuluwa, H., Mpofu, K.: Human-robot collaboration in a small scale rail industry: demanufacturing operations. Procedia Manuf. 17, 230–237 (2018)
Aaltonen, I., Salmi, T., Marstio, I.: Refining levels of collaboration to support the design and evaluation of human-robot interaction in the manufacturing industry. Procedia CIRP 72, 93–98 (2018)
Martinez, R., Castillo, O., Aguilar, L.: Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Inf. Sci. 179(13), 2158–2174 (2009)
Abiyev, R., Günsel, I.S., Akkaya, N., Aytac, E., Çağman, A., Abizada, S.: Fuzzy control of omnidirectional robot. Procedia Comput. Sci. 120, 608–616 (2017)
Krishnaa, S., Vasub, S.: Fuzzy PID based adaptive control on industrial robot system. Mater. Today: Proc. 5, 13055–13060 (2018)
Aly, A., Griffiths, S., Stramandinoli, F.: Towards intelligent social robots: current advances in cognitive robotics (2015)
Raun, D., Zhou, C., Gupta, M.: Preface: fuzzy set techniques for intelligent robotic systems. Fuzzy Sets Syst. 134, 1–4 (2003)
Forte, M., Correia, W., Nogueira, F., Torrico, B.: Reference tracking of a nonholonomic mobile robot using sensor fusion techniques and linear control. IFAC-PapersOnLine 51(4), 364–369 (2018)
Singh, N., Thongam, K.: Mobile robot navigation using fuzzy logic in static environments. Procedia Comput. Sci. 125, 11–17 (2017)
Masmoudi, M., Krichen, N., Masmoudi, M., Derbel, N.: Fuzzy logic controllers design for omnidirectional mobile robot navigation. Appl. Soft Comput. 49, 901–919 (2016)
Castillo, O.: Type-2 Fuzzy Logic in Intelligent Control Applications, vol. 272. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24663-0
Sheikhlar, A., Fakharian, A., Adhami-Mirhosseini, A.: Fuzzy adaptive PI control of omni-directional mobile robot. In: 13th Iranian Conference on Fuzzy Systems (IFSC), pp. 1–4 (2013)
Oltean, S., Dulău, M., Puskas, R.: Position control of Robotino mobile robot using fuzzy logic. In: IEEE International Conference on Automation, vol. 1, pp. 1–6 (2010)
Huang, H.-C., Wu, T.-F., Yu, C.-H., Hsu, H.-S.: Intelligent fuzzy motion control of three-wheeled omnidirectional mobile robots for trajectory tracking and stabilization. In: 2012 International Conference on Fuzzy Theory and Its Applications (iFUZZY2012), pp. 107–112 (2012)
Abiyeva, R., Günsela, I., Akkayaa, N., Aytaca, E., Çağman, A., Abizada, S.: Robot soccer control using behaviour trees and fuzzy logic. Procedia Comput. Sci. 102, 477–484 (2016)
Fujita, M., Kitano, H.: Development of an autonomous quadruped robot for robot entertainment. Auton. Robot. 5(1), 7–18 (1998)
Melin, P., Astudillo, L., Castillo, O., Valdez, F., Garcia, M.: Optimal design of type-2 and type-1 fuzzy tracking controllers for autonomous mobile robots under perturbed torques using a new chemical optimization paradigm. Expert Syst. Appl. 40(8), 3185–3195 (2013)
Montiel, O., Sepulveda, R., Melin, P., Castillo, O., Porta, M., Meza, I.: Performance of a simple tuned fuzzy controller and a PID controller on a DC motor. In: IEEE Symposium on Foundations of Computational Intelligence, pp. 531–537 (2007)
Robotino® Festo Didactic. manual.pdf. https://www.festo-didactic.com/int-en/services/robotino. Accessed 14 Aug 2019
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Luna-Lobano, L., Cortés-Antonio, P., Castillo, O., Melin, P. (2019). Comparative Study of P, PI, Fuzzy and Fuzzy PI Controllers in Position Control for Omnidirectional Robots. In: Martínez-Villaseñor, L., Batyrshin, I., Marín-Hernández, A. (eds) Advances in Soft Computing. MICAI 2019. Lecture Notes in Computer Science(), vol 11835. Springer, Cham. https://doi.org/10.1007/978-3-030-33749-0_57
Download citation
DOI: https://doi.org/10.1007/978-3-030-33749-0_57
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33748-3
Online ISBN: 978-3-030-33749-0
eBook Packages: Computer ScienceComputer Science (R0)