Abstract
Orbiting Mars, the European Space Agency (ESA) operated spacecraft - Mars Express (MEX), provides extraordinary science data for the past 15 years. To continue the great contribution, MEX requires accurate power modeling, mainly to compensate for aging and battery degradation. The only unknown variable in the power budget is the power provided to the autonomous thermal subsystem, which in a challenging environment, keeps all equipment under its operating temperature. In this paper, we address the task of predicting the thermal power consumption (TPC) of MEX on all 33 thermal power lines, having available the stream of its telemetry data. Considering the problem definition, we face the task of multi-target regression, learning from data streams. To analyze such data streams, we use the incremental Structured Output Prediction tree (iSOUP-Tree) and the Adaptive Model Rules from High Speed Data Streams (AMRules) to model the power consumption. The evaluation aims to investigate the potential of the methods for learning from data streams for the task of predicting satellite power consumption and the influence of the time resolution of the measurements of thermal power consumption on the performance of the methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
https://kelvins.esa.int/mars-express-power-challenge/ [Last accessed: 12 June 2019].
References
Aho, T., Ženko, B., Džeroski, S., Elomaa, T.: Multi-target regression with rule ensembles. J. Mach. Learn. Res. 13, 2367–2407 (2012)
Almeida, E., Ferreira, C., Gama, J.: Adaptive model rules from data streams. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part I. LNCS (LNAI), vol. 8188, pp. 480–492. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40988-2_31
Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive Online Analysis. J. Mach. Learn. Res. 11, 1601–1604 (2010)
Breskvar, M., et al.: Predicting thermal power consumption of the Mars Express satellite with machine learning. In: 6th International Conference on Space Mission Challenges for Information Technology, pp. 88–93. IEEE (2017)
Chicarro, A., Martin, P., Trautner, R.: The Mars express mission: an overview. In: Mars Express: The Scientific Payload, ESA SP 1240, pp. 3–13. European Space Agency, Publications Division (2004)
Clare, A., King, R.D.: Knowledge discovery in multi-label phenotype data. In: De Raedt, L., Siebes, A. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 42–53. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44794-6_4
De Comité, F., Gilleron, R., Tommasi, M.: Learning multi-label alternating decision trees from texts and data. In: Perner, P., Rosenfeld, A. (eds.) MLDM 2003. LNCS, vol. 2734, pp. 35–49. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45065-3_4
De’Ath, G.: Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology 83(4), 1105–1117 (2002)
Duarte, J., Gama, J., Bifet, A.: Adaptive model rules from high-speed data streams. ACM Trans. Knowl. Discov. Data 10(3), 30 (2016)
Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)
Ikonomovska, E., Gama, J., Džeroski, S.: Incremental multi-target model trees for data streams. In: ACM Symposium on Applied Computing, pp. 988–993. ACM (2011)
Ikonomovska, E., Gama, J., Džeroski, S.: Learning model trees from evolving data streams. Data Min. Knowl. Discov. 23(1), 128–168 (2011)
Khemchandani, R., Chandra, S., et al.: Twin support vector machines for pattern classification. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 905–910 (2007)
Lucas, L., Boumghar, R.: Machine learning for spacecraft operations support - The Mars Express power challenge. In: International Conference on Space Mission Challenges for Information Technology, pp. 82–87. IEEE (2017)
Mitchell, T.: Machine Learning. McGraw Hill, Boston (1997)
Osojnik, A., Panov, P., Džeroski, S.: Tree-based methods for online multi-target regression. J. Intell. Inf. Syst. 50(2), 315–339 (2018)
Pugelj, M., Džeroski, S.: Predicting structured outputs k-Nearest neighbours method. In: Elomaa, T., Hollmén, J., Mannila, H. (eds.) DS 2011. LNCS (LNAI), vol. 6926, pp. 262–276. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24477-3_22
Shi, Z., Wen, Y., Feng, C., Zhao, H.: Drift detection for multi-label data streams based on label grouping and entropy. In: International Conference on Data Mining Workshops, pp. 724–731. IEEE (2014)
Spyromitros-Xioufis, E., Spiliopoulou, M., Tsoumakas, G., Vlahavas, I.: Dealing with concept drift and class imbalance in multi-label stream classification. In: 22nd International Joint Conference on Artificial Intelligence, pp. 1583–1588. AAAI (2011)
Struyf, J., Džeroski, S.: Constraint based induction of multi-objective regression trees. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 222–233. Springer, Heidelberg (2006). https://doi.org/10.1007/11733492_13
Vazquez, E., Walter, E.: Multi-output suppport vector regression. IFAC Proc. Vol. 36(16), 1783–1788 (2003)
Zhang, M.L., Zhou, Z.H.: A k-nearest neighbor based algorithm for multi-label classification. In: International Conference on Granular Computing, pp. 718–721. IEEE (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Stevanoski, B., Kocev, D., Osojnik, A., Dimitrovski, I., Džeroski, S. (2019). Predicting Thermal Power Consumption of the Mars Express Satellite with Data Stream Mining. In: Kralj Novak, P., Šmuc, T., Džeroski, S. (eds) Discovery Science. DS 2019. Lecture Notes in Computer Science(), vol 11828. Springer, Cham. https://doi.org/10.1007/978-3-030-33778-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-33778-0_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33777-3
Online ISBN: 978-3-030-33778-0
eBook Packages: Computer ScienceComputer Science (R0)