Skip to main content

Predicting Thermal Power Consumption of the Mars Express Satellite with Data Stream Mining

  • Conference paper
  • First Online:
Discovery Science (DS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11828))

Included in the following conference series:

Abstract

Orbiting Mars, the European Space Agency (ESA) operated spacecraft - Mars Express (MEX), provides extraordinary science data for the past 15 years. To continue the great contribution, MEX requires accurate power modeling, mainly to compensate for aging and battery degradation. The only unknown variable in the power budget is the power provided to the autonomous thermal subsystem, which in a challenging environment, keeps all equipment under its operating temperature. In this paper, we address the task of predicting the thermal power consumption (TPC) of MEX on all 33 thermal power lines, having available the stream of its telemetry data. Considering the problem definition, we face the task of multi-target regression, learning from data streams. To analyze such data streams, we use the incremental Structured Output Prediction tree (iSOUP-Tree) and the Adaptive Model Rules from High Speed Data Streams (AMRules) to model the power consumption. The evaluation aims to investigate the potential of the methods for learning from data streams for the task of predicting satellite power consumption and the influence of the time resolution of the measurements of thermal power consumption on the performance of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://kelvins.esa.int/mars-express-power-challenge/ [Last accessed: 12 June 2019].

References

  1. Aho, T., Ženko, B., Džeroski, S., Elomaa, T.: Multi-target regression with rule ensembles. J. Mach. Learn. Res. 13, 2367–2407 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Almeida, E., Ferreira, C., Gama, J.: Adaptive model rules from data streams. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part I. LNCS (LNAI), vol. 8188, pp. 480–492. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40988-2_31

    Chapter  Google Scholar 

  3. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive Online Analysis. J. Mach. Learn. Res. 11, 1601–1604 (2010)

    Google Scholar 

  4. Breskvar, M., et al.: Predicting thermal power consumption of the Mars Express satellite with machine learning. In: 6th International Conference on Space Mission Challenges for Information Technology, pp. 88–93. IEEE (2017)

    Google Scholar 

  5. Chicarro, A., Martin, P., Trautner, R.: The Mars express mission: an overview. In: Mars Express: The Scientific Payload, ESA SP 1240, pp. 3–13. European Space Agency, Publications Division (2004)

    Google Scholar 

  6. Clare, A., King, R.D.: Knowledge discovery in multi-label phenotype data. In: De Raedt, L., Siebes, A. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 42–53. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44794-6_4

    Chapter  MATH  Google Scholar 

  7. De Comité, F., Gilleron, R., Tommasi, M.: Learning multi-label alternating decision trees from texts and data. In: Perner, P., Rosenfeld, A. (eds.) MLDM 2003. LNCS, vol. 2734, pp. 35–49. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45065-3_4

    Chapter  MATH  Google Scholar 

  8. De’Ath, G.: Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology 83(4), 1105–1117 (2002)

    Google Scholar 

  9. Duarte, J., Gama, J., Bifet, A.: Adaptive model rules from high-speed data streams. ACM Trans. Knowl. Discov. Data 10(3), 30 (2016)

    Article  Google Scholar 

  10. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)

    Article  MathSciNet  Google Scholar 

  11. Ikonomovska, E., Gama, J., Džeroski, S.: Incremental multi-target model trees for data streams. In: ACM Symposium on Applied Computing, pp. 988–993. ACM (2011)

    Google Scholar 

  12. Ikonomovska, E., Gama, J., Džeroski, S.: Learning model trees from evolving data streams. Data Min. Knowl. Discov. 23(1), 128–168 (2011)

    Article  MathSciNet  Google Scholar 

  13. Khemchandani, R., Chandra, S., et al.: Twin support vector machines for pattern classification. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 905–910 (2007)

    Article  Google Scholar 

  14. Lucas, L., Boumghar, R.: Machine learning for spacecraft operations support - The Mars Express power challenge. In: International Conference on Space Mission Challenges for Information Technology, pp. 82–87. IEEE (2017)

    Google Scholar 

  15. Mitchell, T.: Machine Learning. McGraw Hill, Boston (1997)

    MATH  Google Scholar 

  16. Osojnik, A., Panov, P., Džeroski, S.: Tree-based methods for online multi-target regression. J. Intell. Inf. Syst. 50(2), 315–339 (2018)

    Article  Google Scholar 

  17. Pugelj, M., Džeroski, S.: Predicting structured outputs k-Nearest neighbours method. In: Elomaa, T., Hollmén, J., Mannila, H. (eds.) DS 2011. LNCS (LNAI), vol. 6926, pp. 262–276. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24477-3_22

    Chapter  Google Scholar 

  18. Shi, Z., Wen, Y., Feng, C., Zhao, H.: Drift detection for multi-label data streams based on label grouping and entropy. In: International Conference on Data Mining Workshops, pp. 724–731. IEEE (2014)

    Google Scholar 

  19. Spyromitros-Xioufis, E., Spiliopoulou, M., Tsoumakas, G., Vlahavas, I.: Dealing with concept drift and class imbalance in multi-label stream classification. In: 22nd International Joint Conference on Artificial Intelligence, pp. 1583–1588. AAAI (2011)

    Google Scholar 

  20. Struyf, J., Džeroski, S.: Constraint based induction of multi-objective regression trees. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 222–233. Springer, Heidelberg (2006). https://doi.org/10.1007/11733492_13

    Chapter  Google Scholar 

  21. Vazquez, E., Walter, E.: Multi-output suppport vector regression. IFAC Proc. Vol. 36(16), 1783–1788 (2003)

    Article  Google Scholar 

  22. Zhang, M.L., Zhou, Z.H.: A k-nearest neighbor based algorithm for multi-label classification. In: International Conference on Granular Computing, pp. 718–721. IEEE (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sašo Džeroski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stevanoski, B., Kocev, D., Osojnik, A., Dimitrovski, I., Džeroski, S. (2019). Predicting Thermal Power Consumption of the Mars Express Satellite with Data Stream Mining. In: Kralj Novak, P., Šmuc, T., Džeroski, S. (eds) Discovery Science. DS 2019. Lecture Notes in Computer Science(), vol 11828. Springer, Cham. https://doi.org/10.1007/978-3-030-33778-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33778-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33777-3

  • Online ISBN: 978-3-030-33778-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics