Skip to main content

SAT-Based Automated Mechanism Design for False-Name-Proof Facility Location

  • Conference paper
  • First Online:
PRIMA 2019: Principles and Practice of Multi-Agent Systems (PRIMA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11873))

Abstract

In the literature of mechanism design, market mechanisms have been developed by professionals based on their experience. The concept of automated mechanism design (AMD), initiated by Sandholm (2002), is a ground-breaking computer-aided framework to develop market mechanisms. In this paper, we apply a very recent AMD approach based on Boolean Satisfiability (SAT) to the mechanism design of false-name-proof facility location. We first provide a general theoretical characteristic of false-name-proof mechanisms, which enables a quite compact representation of target mechanisms. Our approach successfully reproduces several known results in the literature on false-name-proof facility locations over discrete structures. Furthermore, some unknown mechanisms are discovered for locating a public good on a 2-by-2 grid, and an impossibility result is revealed for locating a public bad, with an additional mild assumption, on a 2-by-3 grid. Finally, we demonstrate the extendability of our approach, by providing a new false-name-proof mechanism for a slightly modified problem of locating a public good.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The domain of single-peaked preferences coincides with that of single-dipped ones on a 2-by-2 grid. Thus, the same mechanism also works for locating a public bad.

References

  1. Albert, M., Conitzer, V., Lopomo, G.: Assessing the robustness of cremer-mclean with automated mechanism design. In: Proceedings of the AAAI 2015, pp. 763–769 (2015)

    Google Scholar 

  2. Albert, M., Conitzer, V., Stone, P.: Automated design of robust mechanisms. In: Proceedings of the AAAI 2017, pp. 298–304 (2017)

    Google Scholar 

  3. Alcalde-Unzu, J., Vorsatz, M.: Strategy-proof location of public facilities. Games Econ. Behav. 112, 21–48 (2018)

    Article  MathSciNet  Google Scholar 

  4. Alon, N., Feldman, M., Procaccia, A.D., Tennenholtz, M.: Strategyproof approximation of the minimax on networks. Math. Oper. Res. 35(3), 513–526 (2010)

    Article  MathSciNet  Google Scholar 

  5. Alon, N., Feldman, M., Procaccia, A.D., Tennenholtz, M.: Walking in circles. Discrete Math. 310(23), 3432–3435 (2010)

    Article  MathSciNet  Google Scholar 

  6. Aziz, H., Paterson, M.: False name manipulations in weighted voting games: splitting, merging and annexation. In: Proceedings of the AAMAS 2009, pp. 409–416 (2009)

    Google Scholar 

  7. Barthe, G., Gaboardi, M., Arias, E.J.G., Hsu, J., Roth, A., Strub, P.-Y.: Computer-aided verification for mechanism design. In: Cai, Y., Vetta, A. (eds.) WINE 2016. LNCS, vol. 10123, pp. 279–293. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-54110-4_20

    Chapter  Google Scholar 

  8. Brandl, F., Brandt, F., Geist, C., Hofbauer, J.: Strategic abstention based on preference extensions: positive results and computer-generated impossibilities. In: Proceedings of the IJCAI 2015, pp. 18–24 (2015)

    Google Scholar 

  9. Brandt, F., Geist, C.: Finding strategyproof social choice functions via SAT solving. In: Proceedings of the AAMAS 2014, pp. 1193–1200 (2014)

    Google Scholar 

  10. Brandt, F., Geist, C., Peters, D.: Optimal bounds for the no-show paradox via SAT solving. In: Proceedings of the AAMAS 2016, pp. 314–322 (2016)

    Google Scholar 

  11. Brandt, F., Saile, C., Stricker, C.: Voting with ties: strong impossibilities via SAT solving. In: Proceedings of the AAMAS 2018, pp. 1285–1293 (2018)

    Google Scholar 

  12. Bu, N.: Unfolding the mystery of false-name-proofness. Econ. Lett. 120(3), 559–561 (2013)

    Article  MathSciNet  Google Scholar 

  13. Crémer, J., McLean, R.P.: Optimal selling strategies under uncertainty for a discriminating monopolist when demands are interdependent. Econometrica 53(2), 345–361 (1985)

    Article  MathSciNet  Google Scholar 

  14. Dokow, E., Feldman, M., Meir, R., Nehama, I.: Mechanism design on discrete lines and cycles. In: Proceedings of the EC 2012, pp. 423–440 (2012)

    Google Scholar 

  15. Escoffier, B., Gourvès, L., Kim Thang, N., Pascual, F., Spanjaard, O.: Strategy-proof mechanisms for facility location games with many facilities. In: Brafman, R.I., Roberts, F.S., Tsoukiàs, A. (eds.) ADT 2011. LNCS (LNAI), vol. 6992, pp. 67–81. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24873-3_6

    Chapter  Google Scholar 

  16. Feigenbaum, I., Sethuraman, J.: Strategyproof mechanisms for one-dimensional hybrid and obnoxious facility location models. In: Proceedings of the AAAI 2015 Workshop on Incentive and Trust in E-Communities, pp. 8–13 (2015)

    Google Scholar 

  17. Geist, C., Peters, D.: Computer-aided methods for social choice theory. In: Trends in Computational Social Choice, chap. 13, pp. 249–267 (2017)

    Google Scholar 

  18. Kerber, M., Lange, C., Rowat, C.: An introduction to mechanized reasoning. J. Math. Econ. 66, 26–39 (2016)

    Article  MathSciNet  Google Scholar 

  19. Lahiri, A., Peters, H., Storcken, T.: Strategy-proof location of public bads in a two-country model. Math. Soc. Sci. 90, 150–159 (2017)

    Article  MathSciNet  Google Scholar 

  20. Lesca, J., Todo, T., Yokoo, M.: Coexistence of utilitarian efficiency and false-name-proofness in social choice. In: Proceedings of the AAMAS 2014, pp. 1201–1208 (2014)

    Google Scholar 

  21. Manjunath, V.: Efficient and strategy-proof social choice when preferences are single-dipped. Int. J. Game Theory 43(3), 579–597 (2014)

    Article  MathSciNet  Google Scholar 

  22. Moulin, H.: On strategy-proofness and single peakedness. Public Choice 35(4), 437–455 (1980)

    Article  Google Scholar 

  23. Narasimhan, H., Agarwal, S., Parkes, D.C.: Automated mechanism design without money via machine learning. In: Proceedings of the IJCAI 2016, pp. 433–439 (2016)

    Google Scholar 

  24. Nehama, I., Todo, T., Yokoo, M.: Manipulations-resistant facility location mechanisms for ZV-line graphs. In: Proceedings of the AAMAS 2019, pp. 1452–1460 (2019)

    Google Scholar 

  25. Ono, T., Todo, T., Yokoo, M.: Rename and false-name manipulations in discrete facility location with optional preferences. In: An, B., Bazzan, A., Leite, J., Villata, S., van der Torre, L. (eds.) PRIMA 2017. LNCS (LNAI), vol. 10621, pp. 163–179. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69131-2_10

    Chapter  Google Scholar 

  26. Procaccia, A.D., Tennenholtz, M.: Approximate mechanism design without money. ACM Trans. Econ. Comput. 1(4), 18 (2013)

    Article  Google Scholar 

  27. Roy, S., Storcken, T.: A characterization of possibility domains in strategic voting. J. Math. Econ. 84, 46–55 (2019)

    Article  MathSciNet  Google Scholar 

  28. Sandholm, T.: Automated mechanism design: a new application area for search algorithms. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 19–36. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45193-8_2

    Chapter  Google Scholar 

  29. Sandholm, T., Likhodedov, A.: Automated design of revenue-maximizing combinatorial auctions. Oper. Res. 63(5), 1000–1025 (2015)

    Article  MathSciNet  Google Scholar 

  30. Shen, W., Tang, P., Zuo, S.: Automated mechanism design via neural networks. In: Proceedings of the AAMAS 2019, pp. 215–223 (2019)

    Google Scholar 

  31. Sonoda, A., Todo, T., Yokoo, M.: False-name-proof locations of two facilities: economic and algorithmic approachess. In: Proceedings of the AAAI 2016, pp. 615–621 (2016)

    Google Scholar 

  32. Sui, X., Boutilier, C., Sandholm, T.: Analysis and optimization of multi-dimensional percentile mechanisms. In: Proceedings of the IJCAI 2013, pp. 367–374 (2013)

    Google Scholar 

  33. Todo, T., Conitzer, V.: False-name-proof matching. In: Proceedings of the AAMAS 2013, pp. 311–318 (2013)

    Google Scholar 

  34. Todo, T., Iwasaki, A., Yokoo, M.: False-name-proof mechanism design without money. In: Proceedings of the AAMAS 2011, pp. 651–658 (2011)

    Google Scholar 

  35. Todo, T., Okada, N., Yokoo, M.: False-name-proof facility location on discrete structures (2019). http://arxiv.org/abs/1907.08914

  36. Tsuruta, S., Oka, M., Todo, T., Sakurai, Y., Yokoo, M.: Fairness and false-name manipulations in randomized cake cutting. In: Proceedings of the AAMAS 2015, pp. 909–917 (2015)

    Google Scholar 

  37. Yokoo, M., Sakurai, Y., Matsubara, S.: The effect of false-name bids in combinatorial auctions: new fraud in internet auctions. Games Econ. Behav. 46(1), 174–188 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is partially supported by JSPS KAKENHI Grants JP17H00761 and JP17H04695, and JST SICORP JPMJSC1607. The authors thank Ilan Nehama and Yuho Wada for their helpful comments and discussions. All errors are our own.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nodoka Okada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Okada, N., Todo, T., Yokoo, M. (2019). SAT-Based Automated Mechanism Design for False-Name-Proof Facility Location. In: Baldoni, M., Dastani, M., Liao, B., Sakurai, Y., Zalila Wenkstern, R. (eds) PRIMA 2019: Principles and Practice of Multi-Agent Systems. PRIMA 2019. Lecture Notes in Computer Science(), vol 11873. Springer, Cham. https://doi.org/10.1007/978-3-030-33792-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33792-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33791-9

  • Online ISBN: 978-3-030-33792-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics