Skip to main content

Abstract

The precise alignment of retina images from different modalities allows ophthalmologists not only to track morphological/pathological changes over time but also to combine different modalities to approach the diagnosis, prognostication, management and monitoring of a retinal disease. We propose an image registration algorithm to trace changes in the retina structure across modalities using vessel segmentation and automatic landmark detection. The segmentation of the vessels is done using a U-Net and the detection of the vessel junctions is achieved with Mask R-CNN. We evaluated the results of our approach using manual grading by expert readers. In the largest dataset (FA-to-SLO/OCT) containing 1130 pairs we achieve an average error rate of 13.12%. We compared our method with intensity based affine registration methods using original and vessel segmentation images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. CoRR abs/1703.06870 (2017). http://arxiv.org/abs/1703.06870

  2. Hervella, Á.S., Rouco, J., Novo, J., Ortega, M.: Multimodal registration of retinal images using domain-specific landmarks and vessel enhancement. CoRR abs/1803.00951 (2018). http://arxiv.org/abs/1803.00951

  3. Khojasteh, P., Aliahmad, B., Kumar, D.K.: Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms. In: BMC Ophthalmology (2018)

    Google Scholar 

  4. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.W.: elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imag. 29(1), 196–205 (2010). https://doi.org/10.1109/TMI.2009.2035616

    Article  Google Scholar 

  5. Lam, C., Yi, D., Guo, M., Lindsey, T.: Automated detection of diabetic retinopathy using deep learning. AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science 2017, 147–155 (2018)

    Google Scholar 

  6. Li, Y., Gregori, G., Knighton, R.W., Lujan, B., Rosenfeld, P.: Registration of OCT fundus images with color fundus photographs based on blood vessel ridges. Opt. Express 19, 7–16 (2011). https://doi.org/10.1364/OE.19.000007

    Article  Google Scholar 

  7. Li, Z., Huang, F., Zhang, J., Dashtbozorg, B., Abbasi-Sureshjani, S., Sun, Y., Long, X., Yu, Q., ter Haar Romeny, B., Tan, T.: Multi-modal and multi-vendor retina image registration. Biomed. Opt. Express 9(2), 410–422 (2018)

    Article  Google Scholar 

  8. Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imag. 35, 1–1 (2016)

    Article  Google Scholar 

  9. Mattes, D., Haynor, D.R., Vesselle, H., Lewellyn, T.K., Eubank, W.: Nonrigid multimodality image registration. Proc. SPIE - Int. Soc. Opt. Eng. 4322, 1609–1620 (2001). https://doi.org/10.1117/12.431046

    Article  Google Scholar 

  10. Miri, M.S., Abramoff, M., Kwon, Y.H., Garvin, M.K.: Multimodal registration of SD-OCT volumes and fundus photographs using histograms of oriented gradients. Biomed. Opt. Express 7, 5252–5267 (2016)

    Article  Google Scholar 

  11. Novais, E., Baumal, C., Sarraf, D., Freund, K., Duker, J.: Multimodal imaging in retinal disease: a consensus definition. Ophthalmic Surg. Lasers & Imag. Retina 47, 201–205 (2016). https://doi.org/10.3928/23258160-20160229-01

    Article  Google Scholar 

  12. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  13. Palén, A.: Advanced algorithms for manipulating 2D objects on touch screens. Master’s thesis, Tampere University of Technology (2016)

    Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Schlegl, T., et al.: Fully automated detection and quantification of macular fluid in OCT using deep learning. Ophthalmology 125(4), 549–558 (2018)

    Article  Google Scholar 

  16. Schmitz-Valckenberg, S., Holz, F., Bird, A., Spaide, R.F.: Fundus autofluorescence imaging: review and perspectives. Retina (Philadelphia, Pa.) 28, 385–409 (2008). https://doi.org/10.1097/IAE.0b013e318164a907

    Article  Google Scholar 

  17. Zana, F., Klein, J.C.: A multimodal registration algorithm of eye fundus images using vessels detection and hough transform. IEEE Trans. Med. Imag. 18(5), 419–428 (1999). https://doi.org/10.1109/42.774169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Schmidt-Erfurt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arikan, M., Sadeghipour, A., Gerendas, B., Told, R., Schmidt-Erfurt, U. (2019). Deep Learning Based Multi-modal Registration for Retinal Imaging. In: Suzuki, K., et al. Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support. ML-CDS IMIMIC 2019 2019. Lecture Notes in Computer Science(), vol 11797. Springer, Cham. https://doi.org/10.1007/978-3-030-33850-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33850-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33849-7

  • Online ISBN: 978-3-030-33850-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics