Abstract
Autonomous aerial cinematography has the potential to enable automatic capture of aesthetically pleasing videos without requiring human intervention, empowering individuals with the capability of high-end film studios. Current approaches either only handle off-line trajectory generation, or offer strategies that reason over short time horizons and simplistic representations for obstacles, which result in jerky movement and low real-life applicability. In this work we develop a method for aerial filming that is able to trade off shot smoothness, occlusion, and cinematography guidelines in a principled manner, even under noisy actor predictions. We present a novel algorithm for real-time covariant gradient descent that we use to efficiently find the desired trajectories by optimizing a set of cost functions. Experimental results show that our approach creates attractive shots, avoiding obstacles and occlusion 65 times over 1.25 h of flight time, re-planning at 5 Hz with a 10 s time horizon. We robustly film human actors, cars and bicycles performing different motion among obstacles, using various shot types.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arijon, D.: Grammar of the Film Language (1976)
Barry, A.J., Florence, P.R., Tedrake, R.: High-speed autonomous obstacle avoidance with pushbroom stereo. J. Field Robot. 35(1), 52–68 (2018)
Bowen, C.J., Thompson, R.: Grammar of the Shot. Taylor & Francis (2013)
Christie, M., Olivier, P., Normand, J.-M.: Camera control in computer graphics. In: Computer Graphics Forum, vol. 27, pp. 2197–2218. Wiley (2008)
Drucker, S.M., Zeltzer, D.: Intelligent camera control in a virtual environment. In: Graphics Interface, pp. 190–190. Citeseer (1994)
Galvane, Q., Fleureau, J., Tariolle, F.-L., Guillotel, P.: Automated cinematography with unmanned aerial vehicles. arXiv preprint arXiv:1712.04353 (2017)
Galvane, Q., Lino, C., Christie, M., Fleureau, J., Servant, F., Guillotel, P.: Directing cinematographic drones. arXiv preprint arXiv:1712.04216 (2017)
Gebhardt, C., Hepp, B., Nägeli, T., Stevšić, S., Hilliges, O.: Airways: optimization-based planning of quadrotor trajectories according to high-level user goals. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 2508–2519. ACM (2016)
Gebhardt, C., Stevsic, S., Hilliges, O.: Optimizing for aesthetically pleasing quadrotor camera motion (2018)
Gleicher, M., Witkin, A.: Through-the-lens camera control. In: ACM SIGGRAPH Computer Graphics, vol. 26, pp. 331–340. ACM (1992)
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)
Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)
Joubert, N., Roberts, M., Truong, A., Berthouzoz, F., Hanrahan, P.: An interactive tool for designing quadrotor camera shots. ACM Trans. Graph. (TOG) 34(6), 238 (2015)
Joubert, N., Goldman, D.B., Berthouzoz, F., Roberts, M., Landay, J.A., Hanrahan, P., et al.: Towards a drone cinematographer: guiding quadrotor cameras using visual composition principles. arXiv preprint arXiv:1610.01691 (2016)
Lan, Z., Shridhar, M., Hsu, D., Zhao, S.: Xpose: reinventing user interaction with flying cameras. In: Robotics Science and Systems (2017)
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco: common objects in context. In: European Conference on Computer Vision, pp. 740–755. Springer, Heidelberg (2014)
Lino, C., Christie, M.: Intuitive and efficient camera control with the toric space. ACM Trans. Graph. (TOG) 34(4), 82 (2015)
Lino, C., Christie, M., Ranon, R., Bares, W.: The director’s lens: an intelligent assistant for virtual cinematography. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 323–332. ACM (2011)
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y. and Berg, A.C.: SSD: single shot multibox detector. In: European Conference on Computer Vision, pp. 21–37. Springer, Heidelberg (2016)
Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2520–2525. IEEE (2011)
Mohta, K., Watterson, M., Mulgaonkar, Y., Liu, S., Chao, Q., Makineni, A., Saulnier, K., Sun, K., Zhu, A., Delmerico, J., et al.: Fast, autonomous flight in GPS-denied and cluttered environments. J. Field Robot. 35(1), 101–120 (2018)
Nägeli, T., Meier, L., Domahidi, A., Alonso-Mora, J., Hilliges, O.: Real-time planning for automated multi-view drone cinematography. ACM Trans. Graph. (TOG) 36(4), 132 (2017)
Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.W.: Kinectfusion: real-time dense surface mapping and tracking. In: 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 127–136. IEEE (2011)
Ratliff, N., Zucker, M., Bagnell, J.A., Srinivasa, S.: CHOMP: gradient optimization techniques for efficient motion planning. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 489–494. IEEE (2009)
Ratliff, N.D., Silver, D., Bagnell, J.A.: Learning to search: functional gradient techniques for imitation learning. Auton. Robot. 27(1), 25–53 (2009)
Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. arXiv preprint (2017)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)
Roberts, M., Hanrahan, P.: Generating dynamically feasible trajectories for quadrotor cameras. ACM Trans. Graph. (TOG) 35(4), 61 (2016)
Schulman, J., Ho, J., Lee, A.X., Awwal, I., Bradlow, H., Abbeel, P.: Finding locally optimal, collision-free trajectories with sequential convex optimization. In: Robotics: Science and Systems, vol. 9, pp. 1–10. Citeseer (2013)
Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: high-fidelity visual and physical simulation for autonomous vehicles (2017). https://arxiv.org/abs/1705.05065
Shim, D.H., Kim, H.J., Sastry, S.: Decentralized nonlinear model predictive control of multiple flying robots. In: Proceedings of 42nd IEEE Conference on Decision and control, vol. 4, pp. 3621–3626. IEEE (2003)
Turpin, M., Michael, N., Kumar, V.: Trajectory design and control for aggressive formation flight with quadrotors. Auton. Robot. 33(1–2), 143–156 (2012)
Xie, K., Yang, H., Huang, S., Lischinski, D., Christie, M., Kai, X., Gong, M., Cohen-Or, D., Huang, H.: Creating and chaining camera moves for quadrotor videography. ACM Trans. Graph. 37, 14 (2018)
Zucker, M., Ratliff, N., Dragan, A.D., Pivtoraiko, M., Klingensmith, M., Dellin, C.M., Bagnell, J.A., Srinivasa, S.S.: CHOMP: covariant Hamiltonian optimization for motion planning. Int. J. Robot. Res. 32(9–10), 1164–1193 (2013)
Acknowledgements
We thank Lentin Joseph, Aayush Ahuja, Delong Zhu, and Greg Armstrong for the assistance in field experiments and robot construction. Research presented in this paper was funded by Yamaha Motor Co., Ltd.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Bonatti, R., Zhang, Y., Choudhury, S., Wang, W., Scherer, S. (2020). Autonomous Drone Cinematographer: Using Artistic Principles to Create Smooth, Safe, Occlusion-Free Trajectories for Aerial Filming. In: Xiao, J., Kröger, T., Khatib, O. (eds) Proceedings of the 2018 International Symposium on Experimental Robotics. ISER 2018. Springer Proceedings in Advanced Robotics, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-33950-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-33950-0_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33949-4
Online ISBN: 978-3-030-33950-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)