Abstract
The Blackbird unmanned aerial vehicle (UAV) dataset is a large-scale, aggressive indoor flight dataset collected using a custom-built quadrotor platform for use in evaluation of agile perception. Inspired by the potential of future high-speed fully-autonomous drone racing, the Blackbird dataset contains over 10 h of flight data from 168 flights over 17 flight trajectories and 5 environments at velocities up to 7.0 m \(\mathrm{s}^{-1}\). Each flight includes sensor data from 120 Hz stereo and downward-facing photorealistic virtual cameras, 100 Hz IMU, \(\sim \)190 Hz motor speed sensors, and 360 Hz millimeter-accurate motion capture ground truth. Camera images for each flight were photorealistically rendered using FlightGoggles [1] across a variety of environments to facilitate easy experimentation of high performance perception algorithms. The dataset is available for download at http://blackbird-dataset.mit.edu/.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sayre-McCord, T., Guerra, W., Antonini, A., Arneberg, J., Brown, A., Cavalheiro, G., Fang, Y., Gorodetsky, A., McCoy, D., Quilter, S., Riether, F., Tal, E., Terzioglu, Y., Carlone, L., Karaman, S.: Visual-inertial navigation algorithm development using photorealistic camera simulation in the loop. In: 2018 IEEE International Conference on Robotics and Automation (ICRA) (2018)
Falanga, D., Mueggler, E., Faessler, M., Scaramuzza, D.: Aggressive quadrotor flight through narrow gaps with onboard sensing and computing using active vision. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5774–5781. IEEE (2017)
Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J., Omari, S., Achtelik, M.W., Siegwart, R.: The EuRoC micro aerial vehicle datasets. Int. J. Robot. Res. 35(10), 1157–1163 (2016)
Sun, K., Mohta, K., Pfrommer, B., Watterson, M., Liu, S., Mulgaonkar, Y., Taylor, C.J., Kumar, V.: Robust stereo visual inertial odometry for fast autonomous flight. IEEE Robot. Autom. Lett. 3(2), 965–972 (2018)
Majdik, A.L., Till, C., Scaramuzza, D.: The Zurich urban micro aerial vehicle dataset. Int. J. Robot. Res. 36(3), 269–273 (2017)
Wang, S., Bai, M., Mattyus, G., Chu, H., Luo, W., Yang, B., Liang, J., Cheverie, J., Fidler, S., Urtasun, R.: Torontocity: seeing the world with a million eyes. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3028–3036. IEEE (2017)
Tal, E., Karaman, S.: Accurate tracking of aggressive quadrotor trajectories using incremental nonlinear dynamic inversion and differential flatness. In: 2018 Proceedings of the 57th IEEE Conference on Decision and Control. IEEE (2018)
Huang, A.S., Olson, E., Moore, D.C.: LCM: lightweight communications and marshalling. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4057–4062 (2010)
Furgale, P., Rehder, J., Siegwart, R.: Unified temporal and spatial calibration for multi-sensor systems. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1280–1286, November 2013
Lichvar, M.: Chrony. https://chrony.tuxfamily.org/
Savitzky, A., Golay, M.J.: Smoothing and differentiation of data by simplified least squares procedures. Anal Chem. 36(8), 1627–1639 (1964)
Coumans, E.: Bullet physics simulation. In: ACM SIGGRAPH 2015 Courses, p. 7. ACM (2015)
Burri, M., Oleynikova, H., Achtelik, M.W., Siegwart, R.: Real-time visual-inertial mapping, re-localization and planning onboard MAVs in unknown environments. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 2015
Antonini, A., Leonard, J., Karaman, S.: Pre-integrated dynamics factors and a dynamical agile visual-inertial dataset for UAV perception. Master’s thesis, Massachusetts Institute of Technology (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 1 (mp4 39740 KB)
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Antonini, A., Guerra, W., Murali, V., Sayre-McCord, T., Karaman, S. (2020). The Blackbird Dataset: A Large-Scale Dataset for UAV Perception in Aggressive Flight. In: Xiao, J., Kröger, T., Khatib, O. (eds) Proceedings of the 2018 International Symposium on Experimental Robotics. ISER 2018. Springer Proceedings in Advanced Robotics, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-33950-0_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-33950-0_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33949-4
Online ISBN: 978-3-030-33950-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)