Skip to main content

The Blackbird Dataset: A Large-Scale Dataset for UAV Perception in Aggressive Flight

  • Conference paper
  • First Online:
Proceedings of the 2018 International Symposium on Experimental Robotics (ISER 2018)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 11))

Included in the following conference series:

Abstract

The Blackbird unmanned aerial vehicle (UAV) dataset is a large-scale, aggressive indoor flight dataset collected using a custom-built quadrotor platform for use in evaluation of agile perception. Inspired by the potential of future high-speed fully-autonomous drone racing, the Blackbird dataset contains over 10 h of flight data from 168 flights over 17 flight trajectories and 5 environments at velocities up to 7.0 m \(\mathrm{s}^{-1}\). Each flight includes sensor data from 120 Hz stereo and downward-facing photorealistic virtual cameras, 100 Hz IMU, \(\sim \)190 Hz motor speed sensors, and 360 Hz millimeter-accurate motion capture ground truth. Camera images for each flight were photorealistically rendered using FlightGoggles [1] across a variety of environments to facilitate easy experimentation of high performance perception algorithms. The dataset is available for download at http://blackbird-dataset.mit.edu/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sayre-McCord, T., Guerra, W., Antonini, A., Arneberg, J., Brown, A., Cavalheiro, G., Fang, Y., Gorodetsky, A., McCoy, D., Quilter, S., Riether, F., Tal, E., Terzioglu, Y., Carlone, L., Karaman, S.: Visual-inertial navigation algorithm development using photorealistic camera simulation in the loop. In: 2018 IEEE International Conference on Robotics and Automation (ICRA) (2018)

    Google Scholar 

  2. Falanga, D., Mueggler, E., Faessler, M., Scaramuzza, D.: Aggressive quadrotor flight through narrow gaps with onboard sensing and computing using active vision. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5774–5781. IEEE (2017)

    Google Scholar 

  3. Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J., Omari, S., Achtelik, M.W., Siegwart, R.: The EuRoC micro aerial vehicle datasets. Int. J. Robot. Res. 35(10), 1157–1163 (2016)

    Article  Google Scholar 

  4. Sun, K., Mohta, K., Pfrommer, B., Watterson, M., Liu, S., Mulgaonkar, Y., Taylor, C.J., Kumar, V.: Robust stereo visual inertial odometry for fast autonomous flight. IEEE Robot. Autom. Lett. 3(2), 965–972 (2018)

    Article  Google Scholar 

  5. Majdik, A.L., Till, C., Scaramuzza, D.: The Zurich urban micro aerial vehicle dataset. Int. J. Robot. Res. 36(3), 269–273 (2017)

    Article  Google Scholar 

  6. Wang, S., Bai, M., Mattyus, G., Chu, H., Luo, W., Yang, B., Liang, J., Cheverie, J., Fidler, S., Urtasun, R.: Torontocity: seeing the world with a million eyes. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3028–3036. IEEE (2017)

    Google Scholar 

  7. Tal, E., Karaman, S.: Accurate tracking of aggressive quadrotor trajectories using incremental nonlinear dynamic inversion and differential flatness. In: 2018 Proceedings of the 57th IEEE Conference on Decision and Control. IEEE (2018)

    Google Scholar 

  8. Huang, A.S., Olson, E., Moore, D.C.: LCM: lightweight communications and marshalling. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4057–4062 (2010)

    Google Scholar 

  9. Furgale, P., Rehder, J., Siegwart, R.: Unified temporal and spatial calibration for multi-sensor systems. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1280–1286, November 2013

    Google Scholar 

  10. Lichvar, M.: Chrony. https://chrony.tuxfamily.org/

  11. Savitzky, A., Golay, M.J.: Smoothing and differentiation of data by simplified least squares procedures. Anal Chem. 36(8), 1627–1639 (1964)

    Article  Google Scholar 

  12. Coumans, E.: Bullet physics simulation. In: ACM SIGGRAPH 2015 Courses, p. 7. ACM (2015)

    Google Scholar 

  13. Burri, M., Oleynikova, H., Achtelik, M.W., Siegwart, R.: Real-time visual-inertial mapping, re-localization and planning onboard MAVs in unknown environments. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 2015

    Google Scholar 

  14. Antonini, A., Leonard, J., Karaman, S.: Pre-integrated dynamics factors and a dynamical agile visual-inertial dataset for UAV perception. Master’s thesis, Massachusetts Institute of Technology (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winter Guerra .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 39740 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antonini, A., Guerra, W., Murali, V., Sayre-McCord, T., Karaman, S. (2020). The Blackbird Dataset: A Large-Scale Dataset for UAV Perception in Aggressive Flight. In: Xiao, J., Kröger, T., Khatib, O. (eds) Proceedings of the 2018 International Symposium on Experimental Robotics. ISER 2018. Springer Proceedings in Advanced Robotics, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-33950-0_12

Download citation

Publish with us

Policies and ethics