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Abstract—Can a robot grasp an unknown object without seeing
it? In this paper, we present a tactile-sensing based approach to
this challenging problem of grasping novel objects without prior
knowledge of their location or physical properties. Our key idea
is to combine touch based object localization with tactile based re-
grasping. To train our learning models, we created a large-scale
grasping dataset, including more than 30K RGB frames and
over 2.8 million tactile samples from 7800 grasp interactions
of 52 objects. To learn a representation of tactile signals, we
propose an unsupervised auto-encoding scheme, which shows a
significant improvement of 4-9% over prior methods on a variety
of tactile perception tasks. Our system consists of two steps.
First, our touch localization model sequentially “touch-scans”
the workspace and uses a particle filter to aggregate beliefs from
multiple hits of the target. It outputs an estimate of the object’s
location, from which an initial grasp is established. Next, our
re-grasping model learns to progressively improve grasps with
tactile feedback based on the learned features. This network
learns to estimate grasp stability and predict adjustment for the
next grasp. Re-grasping thus is performed iteratively until our
model identifies a stable grasp. Finally, we demonstrate extensive
experimental results on grasping a large set of novel objects
using tactile sensing alone. Furthermore, when applied on top of
a vision-based policy, our re-grasping model significantly boosts
the overall accuracy by 10.6%. We believe this is the first attempt
at learning to grasp with only tactile sensing and without any
prior object knowledge. For supplementary video and dataset
see: cs.cmu.edu/GraspingWithoutSeeing.

I. INTRODUCTION

Consider the task of grasping a slippery glass bottle. We
use vision to determine the object’s location and its properties
such as shape. Based on these estimates, we can even plan how
to approach and make contact with the bottle. However, not
until we get tactile feedback by touching, can we adjust our
hands for a reliable grasp. In many cases, the hand completely
occludes the object after contact, severely diminishing the use
of hand-eye coordination; yet in all these cases we humans are
invariably successful in grasping the objects. In fact, we are
even capable of grasping objects solely based on touching.
A good example is when we probe around on a nightstand
for our phone. Haptics and the sense of touch plays a vital
role in grasping. Yet, most of our currently existing grasping
algorithms primarily builds on visual sensing (RGB-Depth
or laser scanners). In fact, in the recent Amazon Picking
Challenge, only one of 26 teams used a tactile sensor [1]. Can
a robot learn to grasp solely based on touching and without
even using vision? More importantly, can the robot incorporate
both visual inputs and tactile feedback for robust grasping?

Sensory inputs affect the success of a grasp in all stages:

Fig. 1. Our Fetch robot learns to localize and grasp a novel object of unknown
shape from just tactile sensing. Our method estimates the target’s location by
touch-probing the workspace (top right), and establish an initial grasp (bottom
left). We then learn to extract features from haptic feedback, and predict how
to adjust the grasp (bottom right). This re-grasping process is repeated until
our method identifies a stable grasp.

localization of the object, planning1 of the grasp control
parameters (gripper pose, approach direction, etc.) and the
execution of the grasp on the robot. Vision-based methods,
such as object detection, segmentation and point cloud regis-
tration, are widely used for localization. Without using visual
sensing, tactile exploration has demonstrated promising results
on locating objects and estimating their 6 DOF poses [2]–[7].
However, haptics has rarely been considered in the context of
grasping beyond simple, individual objects. Recently, there has
also been tremendous progress in data-driven grasp planning
methods, namely in learning grasp policies from RGB-D
images [8]–[11]. But most of these approaches ignore haptic
feedback during execution. In fact, tactile sensing has been
previously used for grasp execution, for instance in assess-
ing grasp stability [12]–[14], and thus enabling the hand to
adjust its posture and position online [15]–[18]. Nonetheless,
these methods assume either the initial grasp or the object
information is inferred with vision, with few exceptions [19].
Felip et al. [19] presented a full system for tactile grasping
using hand-crafted rules. In such light, no general learning
framework exists for a complete grasp (localization, planning
and execution) using solely touch sensors.

In this work, we present the first general framework for
learning to grasp with only tactile sensing and without prior
object knowledge. Our goal is to scale to a diverse set of

1Grasp planning refers to both analytic and data-driven techniques.
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unknown objects. To this end, we focus on 2D planar grasps of
a single object. To start with, we design a localization module
to obtain an approximate location of the object. Intuitively, we
control the robot to sequentially “touch-scan” the grasp plane
until hitting the object and we use a particle filter to aggregate
the measurements and track the target location.

With all the uncertainty of object location, tactile sensing
and kinematics, how can the robot reliably grasp the object?
Our core idea is to treat grasping as a multi-step process
with error recovery. Specifically, we propose a re-grasping
module that refines the initial grasp with multiple re-trials.
To extract rich meaningful features for the re-grasping task,
we use a recurrent auto-encoder to learn an unsupervised
representation from all the unlabelled data. These features
are then fed to another neural network that simultaneously
estimates grasp stability, and predicts the adjustment for the
next grasp. Our framework will iterate on the grasps until our
network estimates a high chance of success or the number of
trials reaches a predefined limit.

Our high-capacity deep network requires a large-scale tactile
dataset for training, which is missing in the community. We
have thus created a new dataset of grasping with both tactile
and visual sensing. Specifically, we record images, haptic
measurements as the robot gripper encloses its fingers on an
object, high-level re-grasp actions sent to the motion planner
and labels of whether an object has been successfully grasped.
Our publicly available dataset includes 7.8K interactions with
52 unique objects with material labels. We hope that it will
serve as a major resource for future research on visio-haptic
manipulation.

Our method is trained using our dataset, and tested on 20
unseen objects. We systematically vary components of our
framework and benchmark the performance. First, we show
that our unsupervised representation learning produces rich
tactile features for a variety of passive (material recognition)
and active (re-grasping) tasks. Next, we show that haptic based
re-grasping improves a baseline policy, with the ground truth
object location provided by vision-based localization. Finally,
with touch based localization, our full method achieves a
grasping accuracy of 40.0% using tactile sensing alone. We
believe this is one of the first results of grasping a large set
of unknown objects without seeing. Furthermore, we explore
combining haptic and visual sensing for robust grasping. Our
results indicate that our multi-step re-grasping with tactile
feedback 1) improves the robustness of grasp execution and
2) offers an easy plug-in for existing grasp planning methods.

II. RELATED WORK

Grasping is one of the fundamental problems in robotic
manipulation and we refer readers to recent surveys [20]–[22].

Vision Based Grasping. Visual perception has been the
primary modality for sensing, grasp planning and execution.
Several work on model-based grasping make use of visual
information like point clouds/images to estimate physical
properties of objects (e.g., shape [23] or pose [24]), and finally
to generate control commands for grasping. Sensing detailed

physical properties from visual inputs can be exceedingly
challenging, and might not be necessary for finding desired
controls. Therefore, recent papers have focused on learning-
based approaches [8], [25]. These methods directly map input
visual data to the control signals for open-loop grasping.
Recently, a lot of progress has been made in this direction
by using deep models [9]–[11], [26]. However, using visual
inputs alone leads to errors such as slippage due to low-friction
or wrong grasp location due to self-occlusion.

Tactile Exploration. In contrast, humans make great use
of tactile signals for grasping and can even grasp unknown
objects without using visual sensing [27]. Therefore, recent
work in robotics has also explored the use of haptics for
sensing an object’s shape, pose, location or attributes [28]–
[30]. For example, if the location of an object is known, the
shape can be estimated by actively touching its parts [31], [32].
Similarly, given the 3D models of objects, several recent work
seek to infer the 6DOF pose of the objects with a series of
information-gathering actions [2]–[4]. However, these results
have neither been considered for the task of grasping nor
can generalize to unknown objects. The most relevant work
are from [6] and [7]. Pezzementi et al. [6] built occupancy
grid mapping using tactile sensing of unknown 2D objects.
Kaboli et al. [7] proposed a pre-touch strategy to localize novel
objects in a 3D workspace. These work are similar to our touch
localization step, yet they failed to complete the full pipeline
of touch-based grasping.

Re-grasping with Tactile sensing. Haptic feedback is
widely used for closed-loop control when executing a grasp,
also known as re-grasping. Early work [33] focused on
analytical solutions for 2D planar grasp given ideal tactile
sensing of a known object shape. For real world tactile data,
hand crafted rules can be highly effective if object shape
is known [17]. Several recent works addressed the task of
re-grasping or assessing grasp stability without prior object
knowledge [12], [14], [15], [18], [34], [35]. However, they
all rely on a good initial grasp given by another sensor
modality. The most relevant work are from [16], [36] and [19].
Based on tactile feedback, Dang et al. [16] learned to predict
grasp stability [13], which is further used to guide grasping.
Their method can generalize to unknown objects but requires
accurate object locations. Moreover, their approach only used
simulated data with hand-designed features. Koval et al. [36]
utilized haptic feedback to learn both pre and post contact
push-grasping policies. Their method accounts for inaccurate
sensing of object location and pose, yet is limited to objects
with known shapes. Conversely, our method learns tactile
based re-grasping policies with neither prior knowledge of the
object (shape/physics) nor necessarily a good initial grasp. In
addition, our approach makes use of large-scale real-world
visual and haptic data to learn how to grasp. Moreover, Felip
et al. [19] presented a full tactile grasping pipeline (exploration
and re-grasping) with a wrist force-torque sensor, fingertip
tactile sensors and a fully actuated multi-fingered gripper. They
used a set of hand-crafted rules/features and demonstrated
success on a small set of novel objects. Conversely, our tactile
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Fig. 2. Overview of our system and approach. (a) Our robot and sensors: We equip a fetch robot with a Robotiq gripper and additional sensor packages.
Our sensors include force sensor on the fingers of the gripper and RGB-D cameras on the head of the robot; (b) Our touch based object localization: We
touch-probe a 2D grasp plane of the workspace, and use particle filtering to aggregate evidences of the object’s location. An initial grasp is established given
an estimate of the object’s 2D location. (c) Our unsupervised learning scheme for haptic features: We learn to represent haptic data during grasping using
an conditional auto-encoder. The learned features are fed into our re-grasping model to correct the initial grasp. (d) Our re-grasping model: Based on haptic
features from current grasp, we estimate grasp stability and predict how to adjust the grasp. A new grasp is generated by applying the adjustment to the
current grasp. This process repeats until our method predicts a stable grasp.

perception modules are learned from data and only uses the
fingertip tactile sensors. We show that our learned model can
be applied to successfully grasp a larger set of novel objects,
including deformable and elastic ones.

Grasping Datasets. Alongside algorithmic developments,
large-scale datasets have fueled the success of learning to
grasp [9], [26]. However, when it comes to haptic datasets,
there have been only few attempts such as [37], [38]. These
datasets either focus on passive tasks e.g., material recog-
nition [38], or are limited to grasping a small set of 2-3
objects with a small number of trials [37], [39]. As part of
our effort, we created the first large-scale grasping dataset with
both tactile and visual sensing to facilitate future research of
visio-haptic grasping. As a result, our work is also deeply
intertwined with the unsupervised learning of tactile feature
representations. Previous work has primarily used hand-crafted
features for haptic data [17]. Schneider et al. [40] constructed
haptic features using bag-of-words. Madry et al. [41] explored
unsupervised learning of haptic features using sparse coding.
The learned representation has been shown effective for re-
grasping [34], though it is intended for a specific class of
sensors providing a matrix/image of tactile responses. We
propose a novel method for learning haptic features using a
deep recurrent network similar to [42].

III. DATASET

In this section, we present the effort on creating our
visio-haptic dataset for grasping. Large-scale haptic dataset
for grasping is important for learning high capacity deep
models. Unfortunately, this kind of dataset is missing in
the community. We seek to bridge this gap by collecting
a new grasping dataset that includes both visual and haptic

sensor data. Specifically, our dataset consists of 7800 grasp
interactions with 52 different objects. Each grasp interaction
lasts for 3.5-4 seconds and is recorded with:

• RGB Frames: We capture images of four specific events
of a grasping: for the initial scene, before, during and
after grasp execution. These images have a resolution of
1280x960.

• Haptic Measurements: Tactile signals are measured by
force sensors mounted on each of the three fingers of the
gripper. The sensor measures the magnitude (F ) and the
direction of forces (Fx, Fy, Fz) at 100Hz.

• Grasping Actions and Labels: We record the pose
of all 2D planar grasps, including the initial grasp
(x0, y0, z0, θ0) and subsequent re-grasps (xt, yt, zt, θt).
We also record whether the re-grasp succeeded.

• Material Labels of Objects: We label material categories
(7) for each object, including metal, hard plastic, elastic
plastic, stuffed fabric, wood, glass and ceramic.

Data Collection. To collect this dataset, we sample and
execute a large set of grasps. The robot will lift up objects
and automatically detect successful grasps. A major issue with
this data collection process is how we can get more successful
grasps. It is easy to collect failure cases by applying random
grasps but it is difficult to collect successful grasps, which are
critical for learning. To address this issue, we used an existing
vision based grasping policy to sample an initial grasp from a
pre-learned visual grasping policy [43]. We collect two sets of
data and combine them to form our final dataset. The first set
includes all 52 objects with 50-55 initial grasps. Each initial
grasp is followed by a single random re-grasp. The grasps in
this set have a higher rate of success. On the other hand, our
second set contains a subset of 7 objects covering different



types of materials. For each object in this set, we sample 80-
100 initial grasps, and allow 2-3 random re-grasps, resulting
in a higher failure rate.

Dataset Statistics. Overall, our dataset includes more than
30K RGB frames and over 2.8 million of tactile samples from
7800 grasp interactions of 52 objects. We provide grasping
actions and labels for each interaction, as well as material
labels for each object. To the best of our knowledge, this is by
far the largest dataset for vision-haptic grasping. Our dataset
is publicly available at: cs.cmu.edu/GraspingWithoutSeeing.

IV. OVERVIEW

We present an overview of our framework in Fig 2. Our
goal is to reliably grasp a target object using just fingertip
tactile sensors and without knowing the location, pose or shape
of the object. Similar to previous works, our framework has
two main stages: grasp planning and grasp execution. For
planning, we make use of particle filtering to localize an object
based on a sequence of touch-probing. For grasp execution, we
learn to iteratively adjust the grasp based on haptic feedback,
using a deep neural network. Unlike other work in robot
learning [26] which learn torque control, we infer position
control commands and use a motion planner to reach that
configuration. We also explore the benefit of applying our re-
grasping model on top of a vision based grasping policy. Our
methods for planning and execution are detailed in Section V
and VI, respectively.

Platform. We implement our method on a real world robotic
platform—a research edition of Fetch mobile manipulator [44],
equipped with a 3-Finger adaptive gripper (Robotiq). We use
ROS [45] and position control with the Expanding Space Tree
(ESTk) motion planner from MoveIt to generate collision-free
trajectories for the robot. For haptic sensing, we mount a 3-
Axis Optoforce sensor onto each of the three Robotiq fingers.
We made sure this mounting is rigid by using customized
3D-printed fixtures (see left panel of Fig 2). For vision, we
use a PrimeSense Carmine 1.09 short-range RGB-D camera
mounted on the robot’s head. Note that visual data is not
used in our method, except when we explore combining RGB
frames from PrimeSense with haptic sensing for grasping.

V. INITIAL GRASP FROM TOUCHING

We present our method for grasp planning. Traditionally,
the goal of planning is to generate a good initial grasp of
a target object. This usually requires the robot to sense the
physical properties of the object, such as shape or pose. This is
especially challenging with tactile sensing alone. Nevertheless,
our key observations are that 1) we can infer a rough location
of the object by probing the grasp plane and hitting the target
multiple times; 2) even a poor initial grasp is often sufficient
for successful grasping, if we allow the robot to correct the
grasp a few times using haptic feedback. Thus, we propose
a simple method for grasping. We first localize the object by
touching, and then generate a random initial grasp. We will
show that this method can be highly effective when combined
with our learning based re-grasping policy.

A. Particle Filter for Touch Localization

The core of our grasp planning is a simple touch-based lo-
calization method using contact sensing. We consider the task
of grasping a single target object within a known workspace–in
our setting a constrained packaging box in which the object
could be in any pose. In this case, we control the robot to
line-scan a fixed 2D plane of the workspace using one of its
fingers, which functions as a touch probe. The probe moves
in a cartesian path until it detects a contact (defined by a
threshold on the magnitude of force). Our method makes
multiple contacts and uses particle filtering to infer the object’s
location x ∈ R2 on the 2D plane.

The choice of a particle filter is tailored for our problem,
as our contact measurement is highly non-linear and lacks
analytic derivatives. Particle filters are a non-parametric for-
mulation of the recursive Bayes filter:

bel(xt) = ηp(zt|xt, ut)

∫
p(xt|xt−1, ut)bel(xt−1)dxt−1 (1)

The belief bel(xt) is approximated using a finite set of
particles Xt = {x[i]t }ni=1∼bel(xt). xt above denotes the target
location at time t, ut is the line scan action and zt the contact
sensing measurement. The touch-localization framework is
summarized in Algorithm 1 and the detailed mechanisms of
the particle filter could be found in [46]. At the end of touch-
scanning, the centroid of the resampled XNSCANS

particles is
returned as the final estimate of the target object’s location.

Algorithm 1 Touch localization using Contact Sensing
X0 ← Uniform random samples
for t = 1:Nscans do

Xt ← Ø
Run linear scan ut to get observation zt
for i = 1:Nparticles in Xt−1 do

Sample from motion model x[i]t ∼ p(xt|x[i]t−1)

Update measurement w[i]
t ← p(zt|x[i]t , ut)

Xt ← {x[i]t } ∪ Xt

end
Xt ← Resample(Xt, wt)

end
return: mean(Xt = {x[i]t }) → object location

We present details of our measurement and motion models.
• Motion model: Touching the object might change its

location. This displacement is usually small, yet is de-
termined by how the robot moves (ut), and the physical
properties of the object and its environment. We simplify
the motion model by assuming a Gaussian distribution in-
dependent of ut: p(xt|xt−1, ut) = N (xt−1, σ

2I), where
σ is a small noise.

• Measurement model: Our measurement model tracks
physical occupancy of probed locations. Any location on
the 2D plane can be either free space (no contact) or
occupied by the object (contact). We either increase (oc-
cupied) or decrease (free space) the weights of particles
that lies within the vicinity (a sphere of radius 2.5cm for

http://www.cs.cmu.edu/afs/cs/user/amurali/www/projects/GraspingWithoutSeeing/
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Fig. 3. Tactile response from both successful and failed grasps. These grasps
are from objects with varying shape/material/compliance properties. We plot
the time series of force magnitude from our sensors on three fingers (red:
right, green: middle, blue: left). The maximum force during grasping is also
displayed. We record signals before and after the gripper closes (shown in
bottom). These signals contain important information about the object (e.g.,
material, shape) and the grasping (e.g., grasp stability). And we explore using
them to estimate how to correct a previous grasp.

our experiments) of the location. An example is shown
in Fig 2, where particles in swept area of the probe are
down-weighted and particles near the contact point (red
circle) are up-weighted.

Once we estimate the target location, our next step is to
generate a grasp. Without prior object information, we select
a grasp by randomly sampling from the rest of the parameter
space. Executing such a grasp is highly likely to fail, as
this sample can be far away from feasible grasps. Somewhat
surprisingly, we will show that this random policy can produce
a successful grasp, if we allow the robot to re-grasp a few times
and adjust its controls each time based on tactile feedback.

VI. GRASP EXECUTION VIA RE-GRASPING

Given a noisy object location and a randomly selected grasp,
how can the robot reliably grasp the object? To address this
question, let us first look at what is measured by haptic sensors
during grasping. Fig 3 shows haptic responses during the task
of grasping. It is evident that these signals encode important
information about the object in contact. For example, the
magnitude of force implies the material of the object. And
the temporal force variation across three fingers indicates the
shape. These signals also capture critical aspects about the
grasping. For example, we can predict the stability of the
grasping by tracking the temporal structure of signals before
and after contact. Therefore, we hypothesize that these tactile
signals can be used to correct the initial grasp.

We will demonstrate that this is indeed possible if we
consider grasping as a multi-stage process, and allow the robot
to re-grasp a few times. Each new grasp is generated by
adjusting a previous one using haptic feedback. Re-grasping
thus helps to reduce the uncertainty of sensing. To this end,
we propose a learning based approach for tactile based re-

grasping. Our method learns representations from haptic data,
estimate the grasp stability and predict the adjustment for next
grasp, all using deep models. We now present our methods on
haptic feature learning and tactile based re-grasping.

A. Learning Haptic Features

The next question is how do we learn a generalized repre-
sentation of haptic data? Should we use hand-designed features
or some task-specific representation? Raw tactile signals are
in the form of a time series, with a low dimensional vector at
each time step. Since they do not encode much global infor-
mation compared to modalities like vision, it is challenging to
consider haptic data without the context of the robot control
applied. Therefore, what we need to learn is a conditional
representation and to this end, we trained a conditional auto-
encoder model over the haptic signals, shown in Fig 4. Both
encoder and decoder in our model have a recurrent architecture
(LSTMs [47]). Our encoder MENC takes a sequence of haptic
data and control signals as inputs, and encodes them into a low
dimensional latent space H . Our decoder MDEC reconstructs
the input haptic data from the latent space H .

By conditioning the reconstruction on control actions, the
network must learn to embody the temporal structure of haptic
data within the motion of the robot during grasping. This will
allow us to re-use H to present haptic and control signals for
re-grasping. Note that the learning is unsupervised in nature
and does not require manual labeling.

More specifically, our haptic signals, denoted by O = {Ot},
include a 12D vector for each time step from all three fingers.
Our control signals include the configuration of the gripper:
f = {ft} and m = {mt}. mt is the mode of the adaptive
gripper. m describes the angle between the fingers, and has
categorical values of “pinch”, “normal” and “wide angle”.
The under-actuated gripper fingers have three links each but
only one DOF as ft. ft is valid when the gripper has been
fully enclosed on the object. If no object was enclosed (grasp
failure), ft will take the maximum possible value. We use L2
loss and stochastic gradient descent for training. For feature
extraction, we discard the decoder MDEC and only use the
encoder MENC to extract the hidden state H from a fixed size
time window (3 seconds).

B. Learning to Re-grasp

We consider a multi-stage grasping problem, where each
grasp is conditioned on the previous one. Formally, given a
current grasp g, we measure the haptic data O and grasp
configuration parameters (m, f ) and encode them into H =
MENC(O,m, f). H is the hidden state that captures the
haptic responses of the current grasp. Next, we learn the
corrective action ∆g = πre−grasp(H) that leads to better
grasp stability and the architecture is shown in Fig 4. At
the same time, we learn a score function p = Mstability(H)
to predict the grasp stability, which determines the empirical
probability of grasp success. The score function Mstability(H)
is a simple feedforward networks with 5 fully connected layers
of size (512, 512, 256, 128, 64) and a final sigmoid function to
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Fig. 4. Network architectures for learning haptic features (top) and re-
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learns to reconstruct haptic data using both haptic signals and applied gripper
control. We treat the learned latent spaceH as features for learning re-grasping
policy πre−grasp. Our re-grasping policy maps the hidden representation H
to the adjustments of planar grasping parameters (∆x,∆y,∆z,∆θ) (4D).
These high level parameters are then executed using the motion planner to
generate a new grasp.

estimate the probability. When testing, we iteratively apply
the predicted ∆g to current grasp g. We execute g + ∆g
until Mstability predicts a high rate of success. Algorithm 2
summarizes our method.

Algorithm 2 Grasping Without Seeing
Localize object with vision/touch
Sample g1 from πvision/πrandom

Execute g1 on robot
Collect first haptic measurement O1

for i = 2:Tmax do
Encode Hi−1 ← MENC(Oi−1)
Compute pi−1 = Mstability(Hi−1)
if pi−1 > pthreshold then

break
else

Compute gi = πregrasps(Hi−1)
Execute gi on robot
Collect haptic measurement Oi

end
end

Our output action ∆g is parameterized by the change of
the gripper’s position (-0.025m ≤ (∆x, ∆y, ∆z) ≤ 0.025m)
and orientation (−π/4 ≤ ∆θ ≤ π/4). ∆g is thus a 4D vector.
Given that the haptic measurement is only relevant in the local
neighborhood of the current grasp, we constrain the range of
these parameters to small adjustments tailored to our setting.
During data collection, continuous values of the re-grasp
(∆x, ∆y, ∆z, ∆θ) are sampled randomly. However, for the
deep network we use a dicretized output space. Specifically,
we discretize each control dimension into 5 bins. Thus, the
learning of the policy function πre−grasp(H) is similar to
multi-way binary classification.

L =

K∑
i=1

B∑
k=1

D(i)∑
j=1

δ(k, ui,j) · Cross-Entropy(σ(yfinal
ij ), ŷ). (2)

Eq 2 shows our loss for learning our policy function. ŷ
corresponds to the success/failure label while yfinalij is the final
dense layer before the sigmoid. D(i) = 5 gives the number of

discretized bins for control parameter i, K (=4) is the number
of control parameters, B is the batch size and σ is the sigmoid
activation. δ(k, ui,j) is an indicator function and is equal to
1 when the control parameter i ui,j corresponding to bin j
is applied. The learning rates for πre−grasp, MENC/MDEC ,
Mstability are 5e-7, 1e-5 and 5e-5 respectively. All models
are trained with ADAM optimizer [48] for around 20 epochs.
The networks and optimization are implemented in Tensor-
Flow [49] and Keras. Similarly, Mstability is learned using a
cross-entropy loss.

C. Improving Vision-Based Grasping with Re-grasping

Finally, for our experiments we also explore incorporating
the haptic re-grasping module with vision based grasping. In
practice, any vision-based policies could be used [9]–[11]. We
adapt a variant of [43] (hereafter denoted as πvision). πvision is
used to generate an initial grasp, followed by our re-grasping
model. We also use this policy to collect our dataset. We
sample control parameters from πvision that are more likely to
produce a success grasp to increase the number of successful
grasps in our dataset.

Specifically, five control parameters are inferred from the
object’s image Iobj : xpixel, ypixel, θ, MG, hG∼πvision(Iobj).
xpixel and ypixel are the 2-D grasp locations in image plane
(converted to 3-D coordinates xG and yG with a calibrated
depth camera). θ is the angle of the gripper about the vertical
axis in a planar grasp (similar to [9]). MG is the config-
uration of the gripper, which is also used for our learning
of haptic features. And hG is estimated height of the object
from depth sensing. For both testing and data collection,
we sampled Npatches = 40 parameters from πvision and
chose the command ui for each control dimension i by
ui = arg maxj πvision(Iobj , uij).

VII. EXPERIMENTAL EVALUATION

We now present our experimental results. Our experiments
are divided into two parts. First, we evaluate the learned haptic
features for two key tactile perception tasks of material recog-
nition and grasp stability estimation. We compare against state-
of-the-art haptic feature extraction methods, and benchmark
the choice of classifiers. Second, we test our tactile based
grasping framework. We report results for our re-grasping
module, tactile-only grasping, and visio-haptic grasping.

Test Set for Grasping. To evaluate our grasping framework,
we physically test grasping methods on a set of novel objects.
We measure the grasp accuracy averaged over multiple trials
per object as our evaluation criteria. This test setting is very
challenging: testing objects are not presented in the training set
and thus have not been seen by neither our πre−grasp model
nor πvision. Our testing set is divided into two parts, as shown
in Fig 5. Each set consists of 10 different objects. Set A is
more difficult than Set B, as it contains objects with more
complex geometry, heterogeneous material distribution (e.g.,
plastic toy guns and stapler) and articulations. This test set is
also used for grasp stability estimation.
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Fig. 5. Our test set of objects. These objects were not in the training data.
We divide our test set into two parts. Set A contains slightly harder objects
to grasp (such as the red and orange toy guns) compared to Set B.

A. Learning Haptic Features

Our first experiment tests our haptic feature learning
scheme. Our decoder achieves a reconstruction error (L2
norm) of 0.81 and 1.1 on the training set and our held-out
testing set (10% of the recorded data), respectively. This error
(around 1 Newton of force) is reasonable when compared to
∼0.2 Newton sensing noise from our force sensor. To further
evaluate the learned haptic features, we consider two key tasks
in tactile perceptions: (1) material recognition; and (2) grasp
stability estimation. And we consider different combinations
of haptic features and classifiers for both tasks.

Tactile Features. We compare our learned haptic features
with two other baselines representation learning methods.

• Auto-encoder. This is our haptic features learned using a
unsupervised recurrent auto-encoder. Once learned, only
the encoder is used to extract features.

• Sparse Coding. This is a variant [50] of ST-HMP fea-
tures [41]. These features are learned using dictionary
learning and sparse coding on the spectrogram of 1D time
series of tactile signals. Note that directly using ST-HMP
is not feasible for us, as it requires 2D tactile images.

• Hand Crafted. This is from [29], where raw signals
from three specific events (before contact, when the finger
closing movement is stalled due to object-finger contact,
after the fingers are in equilibrium) are extracted.

Choice of Classifiers. We further vary the classifiers used
for both material recognition and grasp stability estimation.

• Deep Network. We train a five-layer neural network with
cross entropy loss for classification.

• SVM. This is a linear classifier trained with hinge loss.
1) Material Recognition: The task is to classify 7 different

materials in our dataset using tactile signals during grasping.
All features are learned from the full training set, as no
supervision is required. Our classifiers are trained on a subset
of the training set (80%) and tested on the held out testing set
(the remaining 20%). We report average class accuracy. The
results are presented in Table I.

TABLE I
RESULTS OF MATERIAL RECOGNITION

Feature Type Accuracy (%)
Deep Network SVM

Auto-encoder (Ours) 42.86 40.68
Sparse Coding [41], [50] 36.35 35.93

Hand Crafted [29] 33.50 33.66
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Fig. 6. Confusion matrix for material recognition on a held out test set.
Using our learned haptic features, we achieve an accuracy of 42.86%.

The features learned from our auto-encoder outperforms
sparse coding and hand crafted features for both the deep
network and SVM by a significant margin (at least 4.7%).
The feed-forward network also performs at least comparably
or slightly better than the SVM for all features. In particular,
our haptic features with deep networks improves the traditional
method of sparse coding with SVM by 5.8%. Furthermore,
we show the confusion matrix for material recognition in
Fig 6. The majority of the error comes from hard objects
that are composed of wood/metal/glass being mis-classified as
hard plastic. This result demonstrates that our haptic features
encode physical properties of the object.

2) Grasp Stability Estimation: The task is to estimate
whether the grasp will be successful given tactile signals
during grasping. Again, all features are learned from the
training set. We train the classifiers on the training set and
apply them on our full test set (580 trials on 20 unseen
objects). We report the accuracy for binary classification. The
results are summarized in Table II.

TABLE II
RESULTS OF GRASP STABILITY ESTIMATION

Feature Type Accuracy (%)
Deep Network SVM

Auto-encoder (Ours) 85.92 84.50
Sparse Coding [41], [50] 81.37 80.12

Hand Crafted [29] 82.54 82.66

The results of grasp stability follow the same trend of
material recognition. Our haptic features significantly out-
perform other features. And the combination of our learned
haptic features with deep network achieves the best accuracy.
This result suggest that the learned haptic features contains
important information for grasping. To better understand our
tactile features for grasping, we visualize the t-SNE embedding
of the learned features and plot example results of our grasp
stability estimation in Fig 7. We observe that the main failure
modes are from that (1) the part of the finger containing the
haptic sensor may not come into contact with the object; and
(2) the object may slip in the gripper.

3) Remarks: We demonstrate that our learned features are
highly effective for two key tactile perception tasks. When
compared to other haptic features, our feature learning can
substantially improve the performance. We also show that deep
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Fig. 7. Visualization of learned haptic features using t-SNE Embedding. Red
and blue dots correspond to failed and successful grasps respectively. We also
plot four typical examples for grasp stability estimation.

networks are on average better than classical linear SVM with
all haptic features. These results provide a strong support to
our design of the re-grasping model, i.e. the combination of
our learned haptic features and deep networks.

B. Tactile Based Grasping

Our second experiment focuses on the tactile based grasping
framework. We first evaluate our core touch based re-grasping
model. We then benchmark the full pipeline, and explore in-
corporating vision based grasping with our re-grasping model.

1) Re-grasping Model: We evaluate our core re-grasping
model using the full test set (20 objects). Note in this case,
we assume an oracle object location is given: we place each
object in eight canonical orientations (N,S,W,E,NE,SE,SW and
NW). Moreover, the initial grasp is randomly selected given
the object location. We then compare three different settings:
a single random re-grasp, multiple random re-grasps, and our
re-grasping model. For fair comparison, we set the number of
trials for random re-grasps equal to the maximum number of
trials of our model. Both random re-grasp and our model are
based on our grasp stability estimation.

TABLE III
RE-GRASPING RESULTS WITH ORACLE OBJECT LOCATIONS

Object
Location

Initial
Grasp Re-grasp Grasp Accuracy (%)

Set A Set B A+B
Vision Random - 16.3 32.5 24.4
Vision Random Random (≤4 trials) 17.5 28.8 23.2
Vision Random Ours (≤4 trials) 33.8 41.3 37.5

The results are shown in Table III. Grasp accuracy on Set B
is always higher than Set A. For the full set, the baseline accu-
racy for chance grasping is 24.4%, where the first (and only)
grasp is sampled from a random policy with no re-grasping.
Interestingly, multiple random re-grasps slightly decreased the
accuracy by 1.2%. And our re-grasping model get the best
accuracy of 37.5%. This is 13.1% better than the baseline
of multiple random re-grasps. This result demonstrates the
effectiveness of our re-grasping module.

2) Grasping without Seeing: Going beyond re-grasping, we
test our full pipeline of tactile based grasping, which includes
touch based localization and re-grasping. In this case, we
simplify our benchmark by only considering our test set B

and use 5 trials per object. This is primarily limited by the run
time of our experiments. Our results are show in Table IV. Our
pipeline increases the baseline of random grasping by 14% and
reaches an accuracy of 40% with only tactile sensing. This is
one of the first results for a complete grasping of multiple
novel objects using only the sense of touch.

TABLE IV
GRASPING ACCURACY OF OUR FULL METHOD. WE ALSO PRESENT

RESULTS OF COMBINING OUR RE-GRASPING MODULE WITH A VISION
BASED POLICY TO FURTHER IMPROVE GRASPING.

Object
Location

Initial
Grasp Re-grasp Grasp

Accuracy (% on Set B)
Touch Random - 26.0
Touch Random Ours (≤4 trials) 40.0
Vision Vision - 51.3
Vision Vision Ours (≤4 trials) 61.9

3) Visio-Haptic Grasping: Our last experiment combines
the proposed re-grasping model with a vision based policy
from [43]. The results are show in Table IV. Our framework
can further benefit from a good initial grasp (+11.3%). And
more importantly, combining vision based grasping with our
tactile based re-grasping can largely improve the accuracy by
10.6%. These results provide a strong evidence for the need
of combining visual and tactile sensing for robust grasping.
Through this experiment, we also shows the flexibility of our
re-grasping model, which can be readily plugged into existing
grasp planning methods.

VIII. CONCLUSIONS

In this paper, we demonstrate one of the first attempts of
learning to grasp novel objects using only tactile sensing and
without prior knowledge about the object. The core of our
method lies in the combination of a) a simple method of touch
based localization b) unsupervised learning of rich tactile
features and c) a learning based method for re-grasping using
haptic feedback. First, we created a large-scale dataset for
visio-haptic grasping to evaluate our method and to facilitate
future research. With this dataset, we used a auto-encoder to
learn rich features from raw tactile signals. These features
proved effective for both passive tasks like material recognition
and active tasks like re-grasping, and displayed an improve-
ment of around 4-9% over prior methods. Finally, we show
that our novel re-grasping model can progressively improve the
grasping, leading to significantly higher success rate even from
a noisy initial grasp. Our method achieved a grasping accuracy
of 40.0% using only tactile sensing for both localization and
grasping. We also demonstrate that this re-grasping model can
be combined with existing vision based grasping to further
improve the accuracy by about 10%. We hope that our method
together with our dataset could provide valuable insights for
solving the challenging problem of autonomous grasping.

IX. FUTURE WORK

Our current method is limited in the sense that re-grasping
has to start from a random initial grasp, which is far from
optimal. Looking forward, tactile exploration could be used to
build a representation of object shape (e.g., Gaussian Process



Implicit Surfaces) followed by grasp planning [51]. Also, the
major failure mode with our current hardware setup is one
of partial observability - the regions of the robot’s finger not
covered by the sensor might come in contact and push the
object. This in turns affects all stages of our pipeline - from
feature learning, localization, grasp stability estimation to re-
grasping. This could be mitigated by using novel skin/contact
sensors and wrist force-torque sensors alongside incidental
contact algorithms [52]. Furthermore, instead of adding sym-
metric Gaussian noise in the motion model of the particle filter,
we can bias the model in the direction of the detected contact
force. Finally, a joint learning of localization and re-grasping
with reinforcement learning is interesting to explore. Staged
learning or policy iteration on the learned policy would greatly
improve its performance as in prior work [9], [10], [43].
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