Skip to main content

In-Bore Experimental Validation of Active Compensation and Membrane Puncture Detection for Targeted MRI-Guided Robotic Prostate Biopsy

  • Conference paper
  • First Online:
Proceedings of the 2018 International Symposium on Experimental Robotics (ISER 2018)

Abstract

It is estimated that in the United States there will be 164,690 new cases and 29,430 deaths from prostate cancer in 2018 [1]. Trans-Rectal Ultrasound (TRUS) has typically been used to facilitate sampling of up to twenty biopsy cores, but due to variable prostate size this technique often still misses clinically significant cancers [2]. Instead, MRI provides higher image quality and multiparametric imaging, allowing for procedures with fewer needle insertions via direct targeting of suspicious lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Society, A.C.: Cancer facts and figures 2018. American Cancer Society (2018)

    Google Scholar 

  2. Djavan, B., Margreiter, M.: Biopsy standards for detection of prostate cancer. World J. Urol. 25(1), 11–17 (2007)

    Article  Google Scholar 

  3. Pacchierotti, C., Abayazid, M., Misra, S., Prattichizzo, D.: Teleoperation of steerable flexible needles by combining kinesthetic and vibratory feedback. IEEE Trans. Haptics 7(4), 551–556 (2014)

    Article  Google Scholar 

  4. Abayazid, M., Roesthuis, R.J., Reilink, R., Misra, S.: Integrating deflection models and image feedback for real-time flexible needle steering. IEEE Trans. Rob. 29(2), 542–553 (2013)

    Article  Google Scholar 

  5. Tse, Z.T.H., Elhawary, H., Rea, M., Davies, B., Young, I., Lamperth, M., et al.: Haptic needle unit for mr-guided biopsy and its control. IEEE/ASME Trans. Mechatron. 17(1), 183–187 (2012)

    Article  Google Scholar 

  6. Coles, T.R., Meglan, D., John, N.W.: The role of haptics in medical training simulators: a survey of the state of the art. IEEE Trans. Haptics 4(1), 51–66 (2011)

    Article  Google Scholar 

  7. Troccaz, J., Peshkin, M., Davies, B.: Guiding systems for computeraided surgery: introducing synergistic devices and discussing the different approaches. Med. Image Anal. 2(2), 101–119 (1988)

    Article  Google Scholar 

  8. Patel, N., Li, G., Shang, W., Wartenberg, M., Heffter, T., Burdette, E., Iordachita, I., Tokuda, J., Hata, N., Tempany, C., Fischer, G.: System integration and preliminary clinical evaluation of a robotic system for mri guided transperineal prostate biopsy (accepted). J. Med. Robot. Res. 4(02), 1950001 (2018)

    Article  Google Scholar 

  9. Tokuda, J., Tuncali, K., Li, N., G an Patel, Heffter, T., Fischer, G., Iordachita, I., Burdette, E., Hata, N., Tempany, C.: In-bore mri-guided transperineal prostate biopsy using 4-dof needle-guide manipulator. In: International Society for Magnetic Resonance in Medicine, Annual Meeting (2016)

    Google Scholar 

  10. Wartenberg, M., Schornak, J., Carvalho, P., Patel, N., Iordachita, I., Tempany, C., Hata, N., Tokuda, J., Fischer, G.: Closed-loop autonomous needle steering during cooperatively controlled needle insertions for MRI-guided pelvic interventions. In: The 10th Hamlyn Symposium on Medical Robotics, pp. 33–34 (2017)

    Google Scholar 

  11. Wartenberg, M., Schornak, J., Gandomi, K., Carvalho, P., Nycz, C., Patel, N., Iordachita, I., Tempany, C., Hata, N., Tokuda, J., Fischer, G.S.: Closed-loop active compensation for needle deflection and target shift during cooperatively controlled robotic needle insertion. Ann. Biomed. Eng. 46(10), 1582–1594 (2018)

    Article  Google Scholar 

  12. Barbe, L., Bayle, B., de Mathelin, M., Gangi, A.: In vivo model estimation and haptic characterization of needle insertions. Int. J. Robot. Res. 26(11–12), 1283–1301 (2007)

    Article  Google Scholar 

  13. Stoianovici, D., Jun, C., Lim, S., Li, P., Petrisor, D., Fricke, S., Sharma, K., Cleary, K.: Multi-imager compatible, mr safe, remote center of motion needle-guide robot. IEEE Trans. Biomed. Eng. 65(1), 165–177 (2017)

    Article  Google Scholar 

  14. National Electrical Manufacturers Association Std. Determination of signal-to-noise ratio (SNR) in diagnostic magnetic resonance imaging.

    Google Scholar 

  15. Krieger, A., Song, S.E., Cho, N.B., Iordachita, I.I., Guion, P., Fichtinger, G., Whitcomb, L.L.: Development and evaluation of an actuated mri-compatible robotic system for mri-guided prostate intervention. IEEE/ASME Trans. Mechatron. 18(1), 273–284 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Wartenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wartenberg, M. et al. (2020). In-Bore Experimental Validation of Active Compensation and Membrane Puncture Detection for Targeted MRI-Guided Robotic Prostate Biopsy. In: Xiao, J., Kröger, T., Khatib, O. (eds) Proceedings of the 2018 International Symposium on Experimental Robotics. ISER 2018. Springer Proceedings in Advanced Robotics, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-33950-0_4

Download citation

Publish with us

Policies and ethics