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Abstract Action anticipation, intent prediction, and proactive behavior are all
desirable characteristics for autonomous driving policies in interactive scenarios.
Paramount, however, is ensuring safety on the road — a key challenge in doing
so is accounting for uncertainty in human driver actions without unduly impact-
ing planner performance. This paper introduces a minimally-interventional safety
controller operating within an autonomous vehicle control stack with the role of en-
suring collision-free interaction with an externally controlled (e.g., human-driven)
counterpart. We leverage reachability analysis to construct a real-time (100Hz) con-
troller that serves the dual role of (1) tracking an input trajectory from a higher-level
planning algorithm using model predictive control, and (2) assuring safety through
maintaining the availability of a collision-free escape maneuver as a persistent con-
straint regardless of whatever future actions the other car takes. A full-scale steer-
by-wire platform is used to conduct traffic weaving experiments wherein the two
cars, initially side-by-side, must swap lanes in a limited amount of time and dis-
tance, emulating cars merging onto/off of a highway. We demonstrate that, with our
control stack, the autonomous vehicle is able to avoid collision even when the other
car defies the planner’s expectations and takes dangerous actions, either carelessly
or with the intent to collide, and otherwise deviates minimally from the planned
trajectory to the extent required to maintain safety.

1 Introduction

Decision-making and control for mobile robots is typically stratified into levels. A
high-level planner, informed by representative dynamics of a robot and its environ-
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ment, might be responsible for selecting a coarse trajectory plan, which is imple-
mented through a low-level controller that respects more accurate models of the
robot’s dynamics and control constraints. While additional components may be re-
quired to flesh out a robot’s full control stack from model to motor commands,
selecting the right “division of responsibilities” is fundamental to system design.

One consideration that defies clear classification, however, is how to ensure a
mobile robot’s safety when operating in close proximity with a rapidly evolving
and stochastic environment. Safety is a function of uncertainty in both the robot’s
dynamics and those of its surroundings; high-level planners typically do not replan
sufficiently rapidly to ensure split-second reactivity to threats, yet low-level con-
trollers are typically too short-sighted to ensure safety beyond their local horizon.
Hand-designed artificial potential fields have been employed at the planning level
[1] to encourage the selection of safer nominal trajectories, while reactive colli-
sion avoidance techniques, e.g., based on online optimal control [2] or precomputed
emergency maneuver libraries [3], have been applied at the controller level to avoid
previously unseen static obstacles, but these approaches do not account for interac-
tive scenarios in which another sentient agent is a key environmental consideration.

In this work we implement a control stack for a full-scale autonomous car (the
“robot”) engaging in close proximity interactions with a human-controlled vehicle
(the “human”). Freedom of motion is essential for the planner to carry out the driv-
ing task while conveying future intent to the other vehicle. Our primary tool for
designing a controller that does not needlessly impinge upon the planner’s choices
is Hamilton-Jacobi (HJ) reachability. Backward HJ reachability, in particular, has
been studied extensively and applied successfully in a variety of safety-critical in-
teractive settings [4, 5, 6, 7, 8, 9] due to its flexibility with respect to system dynam-
ics, and its optimal (i.e., non-overly-conservative) avoidance maneuvers stemming
from its equivalence to an exhaustive search over joint system dynamics. Previ-
ously reachability-based controllers have largely been used in a switched fashion:
the robot is normally allowed to apply any control, but switches to the optimal avoid-
ance controller when near safety violation. While this is sometimes effective [10], to
the best of our knowledge there has not been any work that explicitly addresses the
integration of reachability-based safety controllers as a component within a robot’s
control stack, i.e., with safety as a constraint upon a primary planning objective.
Statement of Contributions: The contributions of this paper are twofold. First, we
propose a method for formally incorporating reachability-based safety within an
existing optimization-based control framework. The main insight that enables our
approach is the recognition that, near safety violation, the set of safety-preserving
controls often contains more than just the optimal avoidance control. Instead of
directly applying this optimal avoidance control when prompted by reachability
considerations, as in a switching control approach, we quantify the set of safety-
preserving controls and pass it to the broader control framework as a constraint. Our
intent is to enable truly minimal intervention against the direction of a higher-level
planner when evasive action is required. Second, we evaluate the benefits and per-
formance of this safe control methodology in the context of a probabilistic planning
framework for the traffic weaving scenario studied at a high level in [11], wherein
two cars, initially side-by-side, must swap lanes in a limited amount of time and
distance. Experiments with a full-scale steer-by-wire vehicle reveal that our com-
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Fig. 1: Decision-making and control stack for human-robot pairwise vehicle interactions. Our con-
tribution in this work is the integration of safety-ensuring control constraints, derived from a HJ
backward reachable set computed and cached offline, into a model predictive controller’s tracking
optimization problem. A high-level interaction planner produces nominal trajectories for the robot
car (foreground); the low-level safe tracking controller executes controls that minimally deviate
from the planner’s choice if the vehicles approach the set of unsafe relative states.

bined control stack achieves better safety than applying a tracking controller alone
to the planner output, and smoother operation (with similar safety) compared with
a switching control scheme; in our discussion we provide a roadmap towards im-
proving the level of safety assurance in the face of practical considerations, i.e.,
unmodeled dynamics, as well as towards generalizations of the basic traffic weav-
ing scenario.

2 Technical Approach

To bring safe traffic weaving to the road, we combine a model-based interaction
planner [11] with a real-time trajectory tracking model predictive control (MPC)
controller inspired by [12], modified to include an additional invariant set constraint
detailed in this section. An outline of our control framework is shown in Figure 1.
Interaction Planner: The traffic-weaving interaction planner [11] uses a predictive
model of future human behavior to select a desired trajectory for the robot car to
follow, updated at ∼3Hz. We extend this work by using a hindsight optimization
policy [13] instead of the limited-lookahead action policy used in [11] in order to
encourage more information-seeking actions from the robot. Though this interac-
tion planner optimizes an objective that weighs safety considerations (e.g., distance
between cars) relative to other concerns (e.g., control effort), it reasons anticipa-
tively with respect to a probabilistic interaction dynamics model. That is, safety is
not enforced as a deterministic constraint at the planning level.
MPC Tracking Controller: The MPC tracking controller, operating at 100Hz, com-
putes optimal controls to track a desired trajectory by solving a quadratic program
(QP) at each iteration. This optimization problem is based on a single track vehi-
cle model (also known as the bicycle model) and incorporates friction and stability
control constraints while minimizing a combination of tracking error and steering
effort. We incorporate additional constraints computed from HJ reachability analy-
sis into this QP to ensure that at each control step the robot car does not enter a state
of possible inevitable collision.
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(a) Joint dynamics are propagated backwards in time. The
sets are not overly-conservative even for long time horizons.
However, they are computationally expensive to compute.

(b) Human dynamics are prop-
agated forward in time (overly-
conservative in general).

Fig. 2: Illustration of backward and forward reachable sets (shaded) to be avoided.

Fig. 3: Contour plots of slices of the HJI value function for the relative dynamics (4); slices show
V as a function of xrel and yrel with all other states held fixed. Left: The pear-shaped BRS stems
from the fact the robot car can swerve its front more rapidly than its rear, e.g., to avoid collision.
Middle: If the human car is traveling faster (in this case at an angle), it is unsafe for the robot to be
in front of the human. Right. If the robot car is traveling faster, it should not be directly behind the
human as collision may be unavoidable if the human brakes abruptly.

2.1 Backward Reachability Analysis

We use infinite time horizon backward reachability analysis to compute additional
safety constraints for the MPC tracking controller. Critically, backward reachability
is computed backwards in time allowing for closed-loop robot reactions to avoid
future collisions (see Figure 2a), while forward reachability is computed forwards
in time assuming open-loop control for the robot (see Figure 2b) which leads to an
overly-conservative robot outlook. Though more expensive to compute, backward
reachability solutions may be precomputed offline and cached for online use. We
briefly review relevant HJ reachability definitions in the remainder of this section;
see [14] for a more in-depth treatment.

Let the relative dynamics of the robot and human be given by ẋR = f (xR ,uR,uH),
and the collision set be T . The BRS A (t) represents the set of “avoid states” from
which if the human followed an adversarial strategy uH(·), any robot action uR(·)
would lead to the relative state trajectory xR(·) being inside T within a time horizon
|t| (note that t < 0 when propagating backwards in time):

A (t) := {x̄R ∈ Rn : ∃uH(·),∀uR(·),∃s ∈ [t,0],xR(t) = x̄R ∧ ẋR = f (xR ,uR,uH)∧ xR(s) ∈T }
(1)

Assuming optimal human actions, A (t) can be computed by solving the Hamilton-
Jacobi-Isaacs (HJI) partial differential equation [9, 15], whose solution V (t,xR)
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gives the BRS as its zero sublevel set: A (t) = {xR : V (t,xR) ≤ 0}.1 When the
control capabilities of the human are no greater than those of the robot, one can take
the limit t →−∞ and obtain the infinite time horizon BRS A∞ with corresponding
value function V∞(xR).2 Illustrative slices of the value function and the BRS for the
vehicle-vehicle relative dynamics considered in this work are shown in Figure 3.

The optimal robot avoidance control offers the greatest increase in V assuming
optimal (worst-case) actions by the human:

u∗R = argmax
uR

min
uH

∇V (xR) · f (xR ,uR,uH) (2)

Previous applications of HJI solutions have switched to this control when near the
boundary of the BRS [10], i.e., when safety is nearly violated. In an interactive
scenario where, for example, we may want to let a robot planner convey intent by
nudging towards the human car to the extent that is safe, we prefer a less extreme
control strategy. Rather than switching to the optimal avoidance controller (2), we
add the set of safety-preserving controls defined below as an additional constraint
in the MPC optimal control problem.

UR(xR) = {uR : min
uH

∇V (xR) · f (xR ,uR,uH)≥ 0}. (3)

UR(xR) represents the set of robot controls that ensure the value function is nonde-
creasing. We compute the BRS offline using the BEACLS toolkit [16], and cache
the value function V and its gradient ∇V . Online we employ a safety buffer ε > 0 so
that when the condition V (xR)≤ ε holds, indicating that the robot is nearing safety
violation, we add a half-space constraint UR(xR) = {uR : MHJI · uR + bHJI ≥ 0}
to the list of MPC constraints in the tracking control problem. This constraint
is a linearized approximation of (3); specifically MHJI = ∇V ∂ f

∂uR
(xR ,u∗H ,uR) and

bHJI =∇V · f (xR ,u∗H ,uR)−MHJI ·uR evaluated at the current state and robot control
(u∗H denotes the optimal, i.e., worst-case, human action defined analogously to (2)).

3 Methodology
In this section we describe how we tailor the technical approach described above
to the particular application of ensuring safety for human-robot pairwise vehicle
interactions. We detail the relative dynamics model for HJI computation and out-
line the MPC tracking controller; all the details of the traffic weaving interaction
planner can be found in [11]. All code for the planner, MPC tracking controller,
and BRS computation is available at https://github.com/StanfordASL/
safe_traffic_weaving.

3.1 Relative Dynamics
We use a six-state single track model to describe the robot car’s dynamics (see
[12] for details) and assume the human car obeys a dynamically extended unicy-
cle model. This represents a compromise between model fidelity and the number

1 The HJI PDE is solved starting from the boundary condition V (0,xR), the sign of which reflects
set membership of xR in T ; see Section 5 for discussion of specific choices of V (0,xR).
2 For ease of notation going forward we will often write V :=V∞.

https://github.com/StanfordASL/safe_traffic_weaving
https://github.com/StanfordASL/safe_traffic_weaving
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of state dimensions in the relative dynamics; reducing the latter is essential since
solving the HJI PDE suffers greatly from the curse of dimensionality.3

We define the relative dynamics (4) in a coordinate system centered on and
aligned with the robot, where Rθ is the counterclockwise rotation matrix over θ .
xrel , yrel and ψrel are the relative position and heading angle between the human and
robot, while the other states are needed to completely describe the human and robot
car dynamics. The robot control inputs uR = [δ , Fx f ,Fxr ] are steering angle and front
and rear longitudinal tire force (we write Fx = Fx f +Fxr to denote total longitudinal
force), while the human control inputs uH = [ω, a] are yaw rate and longitudinal
acceleration.

[
xrel
yrel

]
= R−ψR

[
xH − xR
yH − yR

]
ψrel = ψH −ψR

xR =



ẋrel
ẏrel
ψ̇rel
U̇xR
U̇yR
v̇H
ṙR


=



vH cosψrel −UxR + yrelrR
vH sinψrel −UyR − xrelrR

ω− rR
1
m (Fx +Fxdrag )− rRUxR
1
m (Fy f +Fyr )− rRUxR

a
1

Izz
(āFy f − b̄Fyr )


(4)

We assume that the robot and human car share the same power, steering, and friction
limits. These limits are chosen to reflect the same physical constraints assumed for
the MPC tracking controller’s dynamic bicycle model [12]. Due to its simpler dy-
namics representation, the human car has a transient advantage in control authority
over the robot car (it may change its path curvature discontinuously, while the robot
may not), but by equating the steady state control limits we ensure that the infinite
time horizon BRS computation converges.

3.2 The MPC+HJI Tracking Controller

Both the trajectory tracking objective and safety-preserving control constraint rely
on optimizing over the robot steering and longitudinal force inputs simultane-
ously. The associated tracking optimization problem is non-convex; we apply an
approximate variant of sequential quadratic programming (SQP) in which we time-
discretize and linearize the dynamics over a lookahead horizon and solve one cor-
responding QP at each MPC step. We interpolate along each solution trajectory to
compute the linearization nodes for the QP at the next MPC step.4

We use the ForwardDiff.jl automatic differentiation (AD) package imple-
mented in the Julia programming language [17] to linearize the trajectory track-
ing dynamics as well as the HJI relative dynamics to facilitate the computation of
MHJI and bHJI . We call the Operator Splitting Quadratic Program (OSQP) solver
[18] through the Parametron.jl modeling framework [19]; this combination of
software enables us to solve the following MPC optimization problem at 100Hz.

3 The computation becomes notoriously expensive past five or more states without compromis-
ing on grid discretization or employing some decoupling strategy. We use a grid size of 13×
13×9×9×9×9×9 for our 7D system uniformly spaced over (xrel ,yrel ,ψrel ,UxR ,UyR ,vH ,rR) ∈
[−15,15]× [−5,5]× [−π/2,π/2]× [1,12]× [−2,2]× [1,12]× [−1,1]; computing the BRS with
this discretization takes approximately 16 hours on a 3.6GHz octocore AMD Ryzen 1800X CPU.
4 Only a single iteration of SQP is solved for the tracking problem at each MPC step, rather than
the usual iteration until convergence. Since the tracking problems are so similar from one MPC
step to the next, we find that this approach yields sufficient performance for our purposes.
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Fig. 4: X1: a steer-by-wire experimental vehicle platform. It is equipped with three LiDARs (one
32-beam and two 16-beam), a differential GPS/INS which provides pose estimates accurate to
within a few centimeters as well as high fidelity velocity, acceleration, and yaw rate estimates. ROS
is used to interface the planning/control stack described in this work with a dSpace MicroAutoBox
onboard X1 which handles sensing and control at the hardware level.

Let qk = [∆sk,Ux,k,Uy,k,rk,∆ψk,ek]
T be the state of the robot car with respect to

a nominal trajectory at discrete time step k. ∆sk, ek and ∆ψk denote longitudinal,
lateral, and heading angle error; Ux,k, Uy,k, and rk are body-frame longitudinal and
lateral velocity, and yaw rate respectively. Let uk = [δk,Fx,k] be the controls at step k
and let Akqk+B−k uk+B+

k uk+1+ck = qk+1 denote linearized first-order-hold dynam-
ics. We adopt the varying time steps method and stable handling envelope constraint
(Hk, Gk) from [12]; σβ ,k, σr,k, and σHJI are slack variables to ensure the existence
of a feasible solution. The constraint MHJIu j + bHJI ≥ −σHJI is added only when
V (xR) ≤ ε . Although HJI theory suggests that applying this constraint on the next
action alone is sufficient, we apply it over the next 3 timesteps (30ms lookahead) to
account for the many approximations inherent in our QP formulation.

minimize
q,u,σ ,σHJI ,∆δ ,∆Fx

T

∑
k=1

∆sT
k Q∆s∆sk +∆ψ

T
k Q∆ψ ∆ψk + eT

k Qeek +∆δ
T
k R∆δ ∆δk+

∆FT
x,kR∆Fx ∆Fx,k +Wβ σβ ,k +Wrσr,k +WHJIσHJI,k

subject to δk+1−δk = ∆δk, ∆δmin ≤ ∆δk ≤ ∆δmax, δmin ≤ δk ≤ δmax

Fx,k+1−Fx,k = ∆Fx,k, Vmin ≤Ux,k ≤Vmin, Fx,min ≤ Fx,k ≤ Fx,max

σ1,k ≥ 0, σ2,k ≥ 0, σHJI, j ≥ 0

Hk

[
Uy,k
rk

]
−Gk ≤

[
σβ ,k
σr,k

]
, Akqk +B−k uk +B+

k uk+1 + ck = qk+1

q1 = qcurr, u1 = ucurr, MHJIu j +bHJI ≥−σHJI

for j = 1, ...,THJI , k = 1, ...,T

(5)

4 Experiments

4.1 Experimental Vehicle Platform
X1 is a flexible steer-by-wire, drive-by-wire, and brake-by-wire experimental ve-
hicle developed by the Stanford Dynamic Design Lab (see Figure 4). To control
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X1, desired steering (δ ) and longitudinal tire force (Fx f ,Fxr ) commands are sent to
the dSpace MicroAutoBox (MAB) which handles all sensor inputs except LiDAR
(handled by the onboard PC) and implements all low level actuator controllers. We
use the Robot Operating System (ROS) to communicate with the MAB; the plan-
ning/control stack described in this work is running onboard X1 on a consumer
desktop PC running Ubuntu 16.04 equipped with a quadcore Intel Core i7-6700K
CPU and an NVIDIA GeForce GTX 1080 GPU.

4.2 Results

Fig. 5: 1/10-scale
RC car with LiDAR-
visible mast.

To evaluate our proposed control stack — a synthesis of a
high-level probabilistic interaction planner with the MPC+HJI
tracking controller — we perform full-scale human-in-the-loop
traffic-weaving trials with X1 taking on the role of the robot
car.5 We investigate and evaluate the effectiveness of our control
stack by allowing the human car to act carelessly (i.e., swerving
blindly towards the robot car) during the experiments. We com-
pare our proposed controller (MPC+HJI) against a tracking-only
MPC controller (MPC) and a controller that switches to the HJI
optimal avoidance controller when near safety violation (switch-
ing). To ramp up towards testing with two full-scale vehicles
in the near future, we investigate two types of human car: (1)
a virtual human-driven car and (2) a 1/10-scale LiDAR-visible
human-driven RC car.

4.3 Virtual Human-Driven Vehicle

To ensure a completely safe experimental environment, our first tier of experimenta-
tion uses a joystick-controlled virtual vehicle for the human car and allows the robot
control stack to have perfect observation of the human car state. Experimental trials
of the probabilistic planning framework for the MPC+HJI and switching controllers
are shown in Figure 6a and 6b respectively, along with a simulated comparison be-
tween the two safety controllers and the tracking-only controller.6 As expected, we
see that the MPC+HJI controller represents a middle ground between the tracking-
only MPC which does not react to the human car’s intrusion, and the switching con-
troller which arguably overreacts with a large excursion outside the lane boundaries.
Evident from Figure 6a, our proposed controller tries to be minimally interventional
— the robot car swerves/brakes but only to an extent that is necessary.

4.4 1/10-Scale Human-Driven Vehicle

To begin to investigate the effects of perception uncertainty on our safety assurance
framework we use three LiDARs onboard X1 to track a human-driven RC car, and

5 We scaled the highway traffic-weaving scenario (mean speed ∼28m/s) in [11] down to a mean
speed of ∼8m/s by shortening the track (reducing longitudinal velocity by a constant) and scaling
time by a factor of 4/3 (with the effect of scaling speeds by 3/4 and accelerations by 9/16).
6 For comparative purposes, the controllers were simulated with the displayed nominal trajectory
held fixed, but in reality, the nominal trajectory in these experiments was updated at ∼ 4Hz.
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(a) Controller comparison on experimental data where the robot car uses a MPC+HJI controller.

(b) Controller comparison on experimental data where the robot car uses a switching controller.

Fig. 6: Controller comparison on planner trajectories from X1/virtual human-driven vehicle exper-
iments. Top left: A close up view of the different simulated controller trajectories when V (xR) first
drops below ε = 0.05. Top right: The corresponding evolutions of V (xR). Bottom: A time-lapse
view of the traffic-weaving experiment, with the dashed box corresponding to top left figure.

implement a Kalman filter for human car state estimation (position, velocity, and
acceleration). Even with imperfect observations, we show some successful prelim-
inary results (an example is shown in Figure 7) at mean speeds of 4m/s, close to
the limits of the RC car + LiDAR-visible mast in crosswinds at the test track. We
observe similar behavior as in the virtual human car experiments, including the fact
that the value function dips briefly below zero before the MPC+HJI controller is
able to arrest its fall; we discuss this behavior in the next section.

5 Discussion

Beyond the qualitative confirmation of our design goals, our experimental results
reveal two main insights.
Takeaway 1: The reachability cache is underly-conservative with respect to robot
car dynamics and overly-conservative with respect to human car dynamics.
In all cases — hardware experiments as well as simulation results — the HJI value
function V dips below zero, indicating that neither the HJI+MPC nor even the opti-
mal avoidance switching controller are capable of guaranteeing safety in the strictest
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Fig. 7: Time-lapse of pairwise vehicle interaction: X1 with 1/10-scale human-driven RC car. The
RC car (green trajectory) nudges into X1 (red trajectory), which swerves gently to avoid.

sense. The root of this apparent paradox is in the computation of the reachability
cache used by both controllers as the basis of their safety assurance. Though the
7-state relative dynamics model (4) subsumes a single-track vehicle model that has
proven successful in predicting the evolution of highly dynamic vehicle maneuvers
[2, 12], the way it is employed in computing the value function V omits relevant
components of the dynamics. In particular, when computing the optimal avoidance
control (2) as part of solving the HJI partial differential equation, we assume total
freedom over the choice of robot steering angle δ and longitudinal force command
Fx, up to maximum control limits. This does not account for, e.g., limits on the steer-
ing slew rate (traversing [−δmax,δmax] takes approximately 1 second), and thus the
value function is computed under the assumption that the robot can brake/swerve
far faster than it actually can.

We note that simply tuning the safety buffer ε is insufficient to account for these
unmodeled dynamics. In Figure 6 we see that V may drop from approximately 0.5
(the value when the two cars traveling at 8m/s start side-by-side in lanes) to -0.3
in the span of a few tenths of a second. Selecting ε > 0.5 might give enough time
for the steering to catch up, but such a selection would prevent the robot car from
accomplishing the traffic weaving task even under nominal conditions, i.e., when the
human car is equally concerned about collision avoidance. This is because the safety
controller would push the robot car outside of its lane from the outset to maintain
the buffer. This behavior follows from wide level sets associated with the transient
control authority asymmetry (recall that in the HJI relative dynamics the human
car may adjust its trajectory curvature discontinuously), assumed as a conservative
safety measure as well as a way to keep the relative state dimension manageable.

The simplest remedy for both of these issues is to increase the fidelity of the rel-
ative dynamics model by incorporating additional integrator states δ̇ for the robot
and ω̇ for the human. Naively increasing the state dimension to 8 or 9, however,
might not be computationally feasible (even offline) without devising more efficient
HJI solution techniques or choosing an extremely coarse discretization over the ad-
ditional states.7 We believe that simulation, accounting for slew rates, could be a
good tool to prototype such efforts, noting that as it stands we have relatively good
agreement between simulation and experimental platform in our testing.

7 By literature standards we already use a relatively coarse discretization grid for solving the HJI
PDE; associated numerical inaccuracies may be another source of the observed safety mismatch.
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Takeaway 2: Interpretability of the value function V should be a key consideration
in future work.
In this work the terminal value function V (0,xR) is specified as the separation/pene-
tration distance between the bounding boxes of the two vehicles, a purely geometric
quantity dependent only on xrel , yrel , and ψrel . Recalling that V (:= V∞) represents
the worst-case eventual outcome of a differential game assuming optimal actions
from both robot and human, we may interpret the above results through the lens
of worst-case outcomes, i.e., a value of -0.3 may be thought of as 30cm of collision
penetration assuming optimal collision seeking/avoidance from human/robot. When
extending this work to cases with environmental obstacles (e.g., concrete highway
boundaries that preclude large deviations from lane), or multi-agent settings where
the robot must account for the uncertainty in multiple other parties’ actions, for
many common scenarios it may be the case that guaranteeing absolute safety is im-
possible. Instead of avoiding a BRS of states that might lead to collision, we should
instead treat the value function inside the BRS as a cost. In particular we should
specify more contextually relevant values of V (0,xR) for states in collision, e.g.,
negative kinetic energy or another notion of collision severity as a function of the
velocity states UxR , UyR , vH , and rR in addition to the relative pose. This would lead
to a controller that prefers, in the worst case, collisions at lower speed, or perhaps
“glancing blows” where the velocities of the two cars are similar in magnitude and
direction. Computationally we could use such a value function in an MPC formula-
tion similar to that presented in this work, with static obstacles either incorporated
in V (0,xR) or represented as additional MPC constraints as done in [12], and ac-
commodating multiple other agents by considering them pairwise with the robot and
taking the minimum over the corresponding value functions.

6 Conclusions
We have investigated a control scheme for providing real-time safety assurance to
underpin the guidance of a probabilistic planner for human-robot vehicle-vehicle
interactions. By essentially projecting the planner’s desired trajectory into the set
of safety-preserving controls whenever safety is threatened, we preserve more of
the planner’s intent than would be achieved by adopting the optimal control with
respect to separation distance. Our experiments show that with our proposed mini-
mally interventional safety controller, we accomplish the high level objective (traf-
fic weaving) despite the human car swerving directly onto the path of the robot car,
and accomplish this relatively smoothly compared to using a switching controller
that results in the robot car swerving more violently off the road. We note that this
work represents only a promising first step towards the integration of reachability-
based safety guarantees into a probabilistic planning framework. We have already
discussed the concrete modifications to this controller we believe are necessary to
improve the impact of these guarantees; further study should also consider better fit-
ting of the planning objective at the controller level. That is, instead of performing a
naive projection, i.e., the one that minimizes trajectory tracking error, it is likely that
a more nuanced selection informed by the planner’s prediction model would repre-
sent a better “backup choice” in the case that safety is threatened. We recognize that
ultimately, guaranteeing absolute safety on a crowded roadway may not be realis-
tic, but we believe that in such situations value functions derived from reachability
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may provide a useful metric for near-instantly evaluating the future implications of
a present action choice.
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