Skip to main content

Constrained Real-Parameter Optimization Using the Firefly Algorithm and the Grey Wolf Optimizer

  • Chapter
  • First Online:
Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine

Part of the book series: Studies in Computational Intelligence ((SCI,volume 827))

Abstract

The main goal of this paper is to present the performance of two popular algorithms, the first is the Firefly Algorithm (FA) and the second one is the Grey Wolf Optimizer (GWO) algorithm for complex problems. In this case the problems that we are presenting are of the CEC 2017 Competition on Constrained Real-Parameter Optimization in order to realize a brief analysis, study and comparison between the FA and GWO algorithms respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. H.R. Maier, Z. Kapelan, Evolutionary algorithms and other metaheuritics in water resources: Current status, research challenges and future directions. Environ. Model Softw. 62, 271–299 (2014)

    Article  Google Scholar 

  2. U. Can, Alatas B: physics based metaheuristic algorithms for global optimization. Am. J. Inf. Sci. Comput. Eng. 1, 94–106 (2015)

    Google Scholar 

  3. X. Yang, M. Karamanoglu, Swarm intelligence and bio-inspired computation: an overview. Swarm Intell. Bio-Inspired Comput., 3–23 (2013)

    Google Scholar 

  4. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. Evolut. Comput. IEEE Trans. 1, 67–82 (1997)

    Article  Google Scholar 

  5. X.-S. Yang, Firefly Algorithm, Lévy Flights and Global Optimization arXiv:1003.1464v1 (2010)

  6. X.-S. Yang, Firefly Algorithm: Recent Advances and Applications arXiv:1308.3898v1 (2013)

  7. S. Mirjalili, M. Mirjalili, A. Lewis, Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  8. C. Muro, R. Escobedo, L. Spector, R. Coppinger, Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behav. Process. 88, 192–197 (2011)

    Article  Google Scholar 

  9. L. Rodríguez, O. Castillo, M. Valdez, J. Soria, A comparative study of dynamic adaptation of parameters in the GWO algorithm using type-1 and interval type-2 fuzzy logic. Fuzzy Logic Augmentation Neural Optim. Algorithms: Theor. Aspects Real Appl., 3–17 (2018)

    Google Scholar 

  10. J. Digalakis, K. Margaritis, On benchmarking functions for genetic algorithms. Int. J. Comput. Math. 77, 481–506 (2001)

    Article  MathSciNet  Google Scholar 

  11. M. Molga, C. Smutnicki, Test functions for optimization needs. Test functions for optimization needs (2005)

    Google Scholar 

  12. X.-S. Yang, Test problems in optimization. arXiv, preprint arXiv: 1008.0549 (2010)

    Google Scholar 

  13. W. Guohua, R. Mallipeddi, P.N. Suganthan, Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization (2017)

    Google Scholar 

  14. M. Lagunes, O. Castillo J. Soria, Optimization of membership functions parameters for fuzzy controller of an autonomous mobile robot using the firefly algorithm, in Fuzzy Logic Augmentation of Neural and Optimization Algorithms (2018), pp 199–206

    Google Scholar 

  15. L. Rodriguez, O. Castillo, J. Soria, P. Melin, F. Valdez, C. Gonzalez, G. Martinez, J. Soto, A fuzzy hierarchical operator in the grey wolf optimizer algorithm. Appl. Soft Comput. 57, 315–328 (2017)

    Article  Google Scholar 

  16. R. Larson, B. Farber, Elementary Statistics Picturing the World (Pearson Education Inc. 2003), pp. 428–433

    Google Scholar 

  17. B. Gonzalez, P. Melin, F. Valdez, G. Prado-Arechiga, Ensemble neural network optimization using a gravitational search algorithm with interval type-1 and type-2 fuzzy parameter adaptation in pattern recognition applications, in Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications (2018), pp 17–27

    Google Scholar 

  18. E. Bernal, O. Castillo, J. Soria, Imperialist competitive algorithm with dynamic parameter adaptation applied to the optimization of mathematical functions. Nat.-Inspired Des. Hybrid Int. Syst. (2017), pp 329–341

    Google Scholar 

  19. J. Barraza, P. Melin, F. Valdez, C.I. Gonzalez, Fuzzy Fireworks Algorithm Based on a Sparks Dispersion Measure, Algorithms, vol. 10 (2017)

    Article  Google Scholar 

  20. J. Barraza, P. Melin, F. Valdez, C. Gonzalez, Fuzzy FWA with dynamic adaptation of parameters, in IEEE CEC (2016), pp. 4053–4060

    Google Scholar 

  21. L. Rodríguez, O. Castillo, M. García, J. Soria, A comparative study of dynamic adaptation of parameters in the GWO algorithm using type-1 and interval type-2 fuzzy logic, in Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications (2018), pp 3–16

    Google Scholar 

  22. C. Caraveo, A. Fevrier O. Castillo, Optimization mathematical functions for multiple variables using the algorithm of self-defense of the plants. Nat.-Inspired Des. Hybrid Intell. Syst., 631–640 (2017)

    Google Scholar 

  23. M. Guerrero, O. Castillo, M. Garcia, Cuckoo search algorithm via Lévy flight with dynamic adaptation of parameter using fuzzy logic for benchmark mathematical functions, in Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization. Studies in Computational Intelligence (2016), pp 555–571

    Chapter  Google Scholar 

  24. C. Leal Ramírez, O. Castillo, P. Melin, A. Rodríguez Díaz, Simulation of the bird age-structured population growth based on an interval type-2 fuzzy cellular structure. Inf. Sci. 181(3), 519–535 (2011)

    Article  MathSciNet  Google Scholar 

  25. N.R. Cázarez-Castro, L.T. Aguilar, O. Castillo, Designing type-1 and type-2 fuzzy logic controllers via fuzzy Lyapunov synthesis for nonsmooth mechanical systems. Eng. Appl. AI 25(5), 971–979 (2012)

    Article  Google Scholar 

  26. E. Rubio, O. Castillo, F. Valdez, P. Melin, C.I. González, G. Martinez: An extension of the fuzzy possibilistic clustering algorithm using type-2 fuzzy logic techniques. Adv. Fuzzy Syst., 7094046:1-7094046:23 (2017)

    Article  Google Scholar 

  27. O. Castillo, P. Melin, Intelligent systems with interval type-2 fuzzy logic. Int. J. Innov. Comput. Inf. Control 4(4), 771–783 (2008)

    Google Scholar 

  28. G.M. Mendez, O. Castillo, Interval type-2 TSK fuzzy logic systems using hybrid learning algorithm, fuzzy systems, in The 14th IEEE International Conference on FUZZ’05 (2005), pp. 230–235

    Google Scholar 

  29. P. Melin, C.I. González, J.R. Castro, O. Mendoza, O. Castillo, Edge-detection method for image processing based on generalized Type-2 fuzzy logic. IEEE Trans. Fuzzy Syst. 22(6), 1515–1525 (2014)

    Article  Google Scholar 

  30. C.I. González, P. Melin, J.R. Castro, O. Castillo, O. Mendoza, Optimization of interval type-2 fuzzy systems for image edge detection. Appl. Soft Comput. 47, 631–643 (2016)

    Article  Google Scholar 

  31. C.I. González, P. Melin, J.R. Castro, O. Mendoza, O. Castillo, An improved Sobel edge detection method based on generalized type-2 fuzzy logic. Soft. Comput. 20(2), 773–784 (2016)

    Article  Google Scholar 

  32. E. Ontiveros, P. Melin, O. Castillo, High order α-planes integration: a new approach to computational cost reduction of general type-2 fuzzy systems. Eng. Appl. AI 74, 186–197 (2018)

    Article  Google Scholar 

  33. P. Melin, O. Castillo, Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach. IEEE Trans. Ind. Electron. 48(5), 951–955

    Google Scholar 

  34. L. Aguilar, P. Melin, O. Castillo, Intelligent control of a stepping motor drive using a hybrid neuro-fuzzy ANFIS approach. Appl. Soft Comput. 3(3), 209–219 (2003)

    Google Scholar 

  35. P. Melin, O. Castillo, Adaptive intelligent control of aircraft systems with a hybrid approach combining neural networks, fuzzy logic and fractal theory. Appl. Soft Comput. 3(4), 353–362 (2003)

    Google Scholar 

  36. P. Melin, J. Amezcua, F. Valdez, O. Castillo, A new neural network model based on the LVQ algorithm for multi-class classification of arrhythmias. Inf. Sci. 279, 483–497 (2014)

    Article  MathSciNet  Google Scholar 

  37. P. Melin, O. Castillo, Modelling, Simulation and Control of Non-Linear Dynamical Systems: An Intelligent Approach Using Soft Computing and Fractal Theory (CRC Press, 2001)

    Google Scholar 

  38. P. Melin, D. Sánchez, O. Castillo, Genetic optimization of modular neural networks with fuzzy response integration for human recognition. Inf. Sci. 197, 1–19 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodríguez, L., Castillo, O., García, M., Soria, J. (2020). Constrained Real-Parameter Optimization Using the Firefly Algorithm and the Grey Wolf Optimizer. In: Castillo, O., Melin, P. (eds) Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine. Studies in Computational Intelligence, vol 827. Springer, Cham. https://doi.org/10.1007/978-3-030-34135-0_11

Download citation

Publish with us

Policies and ethics