Abstract
The main goal of this paper is to present the performance of two popular algorithms, the first is the Firefly Algorithm (FA) and the second one is the Grey Wolf Optimizer (GWO) algorithm for complex problems. In this case the problems that we are presenting are of the CEC 2017 Competition on Constrained Real-Parameter Optimization in order to realize a brief analysis, study and comparison between the FA and GWO algorithms respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
H.R. Maier, Z. Kapelan, Evolutionary algorithms and other metaheuritics in water resources: Current status, research challenges and future directions. Environ. Model Softw. 62, 271–299 (2014)
U. Can, Alatas B: physics based metaheuristic algorithms for global optimization. Am. J. Inf. Sci. Comput. Eng. 1, 94–106 (2015)
X. Yang, M. Karamanoglu, Swarm intelligence and bio-inspired computation: an overview. Swarm Intell. Bio-Inspired Comput., 3–23 (2013)
D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. Evolut. Comput. IEEE Trans. 1, 67–82 (1997)
X.-S. Yang, Firefly Algorithm, Lévy Flights and Global Optimization arXiv:1003.1464v1 (2010)
X.-S. Yang, Firefly Algorithm: Recent Advances and Applications arXiv:1308.3898v1 (2013)
S. Mirjalili, M. Mirjalili, A. Lewis, Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)
C. Muro, R. Escobedo, L. Spector, R. Coppinger, Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behav. Process. 88, 192–197 (2011)
L. Rodríguez, O. Castillo, M. Valdez, J. Soria, A comparative study of dynamic adaptation of parameters in the GWO algorithm using type-1 and interval type-2 fuzzy logic. Fuzzy Logic Augmentation Neural Optim. Algorithms: Theor. Aspects Real Appl., 3–17 (2018)
J. Digalakis, K. Margaritis, On benchmarking functions for genetic algorithms. Int. J. Comput. Math. 77, 481–506 (2001)
M. Molga, C. Smutnicki, Test functions for optimization needs. Test functions for optimization needs (2005)
X.-S. Yang, Test problems in optimization. arXiv, preprint arXiv: 1008.0549 (2010)
W. Guohua, R. Mallipeddi, P.N. Suganthan, Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization (2017)
M. Lagunes, O. Castillo J. Soria, Optimization of membership functions parameters for fuzzy controller of an autonomous mobile robot using the firefly algorithm, in Fuzzy Logic Augmentation of Neural and Optimization Algorithms (2018), pp 199–206
L. Rodriguez, O. Castillo, J. Soria, P. Melin, F. Valdez, C. Gonzalez, G. Martinez, J. Soto, A fuzzy hierarchical operator in the grey wolf optimizer algorithm. Appl. Soft Comput. 57, 315–328 (2017)
R. Larson, B. Farber, Elementary Statistics Picturing the World (Pearson Education Inc. 2003), pp. 428–433
B. Gonzalez, P. Melin, F. Valdez, G. Prado-Arechiga, Ensemble neural network optimization using a gravitational search algorithm with interval type-1 and type-2 fuzzy parameter adaptation in pattern recognition applications, in Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications (2018), pp 17–27
E. Bernal, O. Castillo, J. Soria, Imperialist competitive algorithm with dynamic parameter adaptation applied to the optimization of mathematical functions. Nat.-Inspired Des. Hybrid Int. Syst. (2017), pp 329–341
J. Barraza, P. Melin, F. Valdez, C.I. Gonzalez, Fuzzy Fireworks Algorithm Based on a Sparks Dispersion Measure, Algorithms, vol. 10 (2017)
J. Barraza, P. Melin, F. Valdez, C. Gonzalez, Fuzzy FWA with dynamic adaptation of parameters, in IEEE CEC (2016), pp. 4053–4060
L. Rodríguez, O. Castillo, M. García, J. Soria, A comparative study of dynamic adaptation of parameters in the GWO algorithm using type-1 and interval type-2 fuzzy logic, in Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications (2018), pp 3–16
C. Caraveo, A. Fevrier O. Castillo, Optimization mathematical functions for multiple variables using the algorithm of self-defense of the plants. Nat.-Inspired Des. Hybrid Intell. Syst., 631–640 (2017)
M. Guerrero, O. Castillo, M. Garcia, Cuckoo search algorithm via Lévy flight with dynamic adaptation of parameter using fuzzy logic for benchmark mathematical functions, in Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization. Studies in Computational Intelligence (2016), pp 555–571
C. Leal Ramírez, O. Castillo, P. Melin, A. Rodríguez Díaz, Simulation of the bird age-structured population growth based on an interval type-2 fuzzy cellular structure. Inf. Sci. 181(3), 519–535 (2011)
N.R. Cázarez-Castro, L.T. Aguilar, O. Castillo, Designing type-1 and type-2 fuzzy logic controllers via fuzzy Lyapunov synthesis for nonsmooth mechanical systems. Eng. Appl. AI 25(5), 971–979 (2012)
E. Rubio, O. Castillo, F. Valdez, P. Melin, C.I. González, G. Martinez: An extension of the fuzzy possibilistic clustering algorithm using type-2 fuzzy logic techniques. Adv. Fuzzy Syst., 7094046:1-7094046:23 (2017)
O. Castillo, P. Melin, Intelligent systems with interval type-2 fuzzy logic. Int. J. Innov. Comput. Inf. Control 4(4), 771–783 (2008)
G.M. Mendez, O. Castillo, Interval type-2 TSK fuzzy logic systems using hybrid learning algorithm, fuzzy systems, in The 14th IEEE International Conference on FUZZ’05 (2005), pp. 230–235
P. Melin, C.I. González, J.R. Castro, O. Mendoza, O. Castillo, Edge-detection method for image processing based on generalized Type-2 fuzzy logic. IEEE Trans. Fuzzy Syst. 22(6), 1515–1525 (2014)
C.I. González, P. Melin, J.R. Castro, O. Castillo, O. Mendoza, Optimization of interval type-2 fuzzy systems for image edge detection. Appl. Soft Comput. 47, 631–643 (2016)
C.I. González, P. Melin, J.R. Castro, O. Mendoza, O. Castillo, An improved Sobel edge detection method based on generalized type-2 fuzzy logic. Soft. Comput. 20(2), 773–784 (2016)
E. Ontiveros, P. Melin, O. Castillo, High order α-planes integration: a new approach to computational cost reduction of general type-2 fuzzy systems. Eng. Appl. AI 74, 186–197 (2018)
P. Melin, O. Castillo, Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach. IEEE Trans. Ind. Electron. 48(5), 951–955
L. Aguilar, P. Melin, O. Castillo, Intelligent control of a stepping motor drive using a hybrid neuro-fuzzy ANFIS approach. Appl. Soft Comput. 3(3), 209–219 (2003)
P. Melin, O. Castillo, Adaptive intelligent control of aircraft systems with a hybrid approach combining neural networks, fuzzy logic and fractal theory. Appl. Soft Comput. 3(4), 353–362 (2003)
P. Melin, J. Amezcua, F. Valdez, O. Castillo, A new neural network model based on the LVQ algorithm for multi-class classification of arrhythmias. Inf. Sci. 279, 483–497 (2014)
P. Melin, O. Castillo, Modelling, Simulation and Control of Non-Linear Dynamical Systems: An Intelligent Approach Using Soft Computing and Fractal Theory (CRC Press, 2001)
P. Melin, D. Sánchez, O. Castillo, Genetic optimization of modular neural networks with fuzzy response integration for human recognition. Inf. Sci. 197, 1–19 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Rodríguez, L., Castillo, O., García, M., Soria, J. (2020). Constrained Real-Parameter Optimization Using the Firefly Algorithm and the Grey Wolf Optimizer. In: Castillo, O., Melin, P. (eds) Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine. Studies in Computational Intelligence, vol 827. Springer, Cham. https://doi.org/10.1007/978-3-030-34135-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-34135-0_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34134-3
Online ISBN: 978-3-030-34135-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)