Abstract
We present how to combine neural networks and fuzzy logic to form a hybrid model as a classification system using 2-lead for cardiac arrhythmias. This hybrid model is used samples of electrocardiograms contained in the MIT-BIH arrhythmia database. The samples of heartbeats are extracted and transformed from the electrocardiograms of this database. The hybrid model is trained and tested with 10 different classes of normal and cardiac arrhythmias heartbeats. The hybrid model used 2 leads included in the MIT-BIH arrhythmia database. The hybrid model used two basic module units, where each unit processing one lead. The basic module unit are composite by three classifiers. Finally, we combined the output results of the two basic module unit with a fuzzy system and we have achievement increase the global classification rate in the hybrid model proposed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
J. Amezcua, P. Melin, A modular LVQ neural network with fuzzy response integration for arrhythmia classification, in IEEE Conference on Norbert Wiener in the 21st Century (2014)
P. Melin, J. Amezcua, F. Valdez, O. Castillo, A new neural network model based on the LVQ algorithm for multi-class classification of arrhythmias. Inf. Sci. 279, 483–497 (2014)
A.F. Khalaf, M.L. Owis, I.A. Yassine, A novel technique for cardiac arrhythmia classification using spectral correlation and support vector machines. Expert Syst. Appl. 42(21), 8361–8368 (2015). Elsevier
M.R. Homaeinezhad, S.A. Atyabi, E. Tavakkoli, H.N. Toosi, A. Ghaffari, R. Ebrahimpour, ECG arrhythmia recognition via a neuro-SVM-KNN hybrid classifier with virtual QRS image-based geometrical features. Expert Syst. Appl. 39(2), 2047–2058 (2012). Elsevier
J.S. Wang, W.C. Chiang, Y.L. Hsu, Y.T. Yang, ECG arrhythmia classification using a probabilistic neural network with a feature reduction method. Neurocomputing 116, 38–45 (2013). Elsevier
R.J. Martis, U.R. Achayra, H. Prasad, C.K. Chua, Application of higher order statistics for atrial arrhythmia classification. Biomed. Signal Process. Control (2013). Elsevier
D. Gaetano, S. Panunzi, F. Rinaldi, A. Risi, M. Sciandrone, A patient adaptable ECG beat classifier based on neural networks. Appl. Math. Comput. 213(1), 243–249 (2009). Elsevier
E. Ramirez, O. Castillo, J. Soria, Hybrid system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined by a fuzzy inference system, in Softcomputing for Recognition Based on Biometrics, Studies in Computational Intelligence, vol. 312 (Springer, 2010), pp. 37–53, ISBN 978-3-642-15110-1
M. Javadi, S.A. Asghar, A. Sajedin, R. Ebrahimpour, Classification of ECG arrhythmia by a modular neural network based on mixture of experts and negatively correlated learning. Biomed. Signal Process. Control 8, 289–296 (2013). Elsevier
M.M. Al Rahhal, Y. Bazi, H. Alhichri, N. Alajlan, F. Melgani, R.R. Yager, Deep learning approach for active classification of electrocardiogram signals. Inf. Sci. 345, 340–354 (2016). Elsevier
P. Melin, E. Ramirez, G. Prado-Arechiga, Cardiac arrhythmia classification using computational intelligence: neural networks and fuzzy logic techniques. European Heart J. 38, P6388 (2017). Oxford academic
P. Melin, G. Prado-Arechiga, I. Miramontes, M. Medina, A hybrid intelligent model based on modular neural network and fuzzy logic for hypertension risk diagnosis. J. Hypertens. 34 (2016)
S.M. Jadhav, S.L. Nalbalwar, A.A. Ghatol, ECG arrhythmia classification using modular neural network model, in IECBES (2012). ISBN 978-1-4244-7600-8
Y. Ozbay, G. Tezel, A new method for classification of ECG arrhythmias using neural network with adaptive activation function. Digital Signal Process. 20, 1040–1049 (2010). Elsevier
C. Zopounidis, M. Doumpos, Multicriteria classification and sorting methods: a literature review. Eur. J. Oper. Res. 138, 229–246 (2002). Elsevier
J.M. Keller, M.R. Gray, J.A. Givens, A fuzzy K-Nearest neighbor algorithm. IEEE Trans. Fuzzy Syst. Man Cybern. 15, 580–585 (1985)
P. Melin, O. Castillo, A review of the applications of type-2 fuzzy logic in classification and pattern recognition. Expert Syst. Appl. 40(13), 5413–5423 (2013)
P. Melin, O. Castillo, A review on the applications of type-2 fuzzy logic in classification and pattern recognition. Expert Syst. Appl. 40, 5413–5423 (2013). Elsevier
R. Ceylan, Y. Ozbay, B. Karlik, A novel approach for classification of ECG arrhythmias: type-2 fuzzy clustering neural network. Expert Syst. Appl. 36(3), 6721–6727 (2009). ACM
T.W. Chua, W.W. Tan, Interval type-2 fuzzy system for ECG arrhythmia classification, in Fuzzy Systems in Bioinformatics and Computational Biology, vol. 242 (2009, Springer), pp. 297–314. ISBN 978-3-540-89968-6
W.W. Tan, C.L. Foo, T. Chua, Type-2 fuzzy system for ECG arrhythmic classification, in FYZZ-IEEE (2007). ISBN 1-4244-1209-9
Y. Ozbay, R. Ceylan, B. Karlik, A fuzzy clustering neural network architecture for classification of ECG arrhythmias. Comput. Biol. Med. 36, 376–388 (2005). Elsevier
E.J.S. Luz, W.R. Schwartz, G. Camara-Chavez, D. Menotti, ECG-based heartbeat classification for arrhythmia detection: a survey. Comput. Methods Programs Biomed. 127, 144–164 (2015). Elsevier
M. Wozniak, M. Grana, E. Corchado, A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16, 3–17 (2014). Elsevier
M.S.A. Megat, A.H. Jahidin, A.N. Norall, Hybrid multilayered perceptron network classification of bundle branch blocks, in IEEE 2012 International Conference on Biomedical Engineering Icobe. ISBN 978-1-4577-1991-2
O. Castillo, P. Melin, E. Ramirez, J. Soria, Hybrid intelligent system for cardiac arrhythmia classification with fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system. Expert Syst. Appl. 39, 2947–2955 (2012)
S. Osowki, T. Markiewicz, L.T. Hoal, Recognition and classification systems of arrhythmia using ensemble of neural networks. Measurement 41(6), 610–617 (2018). Elsevier
S. Osowksi, K. Siwek, R. Siroic, Neural system for heartbeats recognition using genetically integrated ensemble of classifiers. Comput. Biol. Med. 41(3), 173–180 (2011). Elsevier
T.M. Nazmy, H. EL-Messiry, B. AL-Bokhity, Classification of cardiac arrhythmia based on hybrid system. Int. J. Comput. Appl. 2 (2010)
Y.E. Shao, C.D. Hou, C.C. Chiu, Hybrid intelligent modeling schemes for heart disease classification. Appl. Soft Comput. 14, 47–52 (2014). Elsevier
F.A. Elhaj, N. Salim, A.R. Harris, T.T. Swee, T. Ahmed, Arrhytmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput. Methods Programs Biomed. 127, 52–63 (2016). Elsevier
A. Gacek, W. Pedrycz, in ECG Signal Processing, Classification and Interpretation, a Comprehensive Framework of Computational Intelligence (Springer, 2012). ISBN 978-0-85729-867-6
A. Jovic, N. Bogunovic, Evaluating and comparing performance of feature combinations of heart rate variability measures for cardiac rhythm classification. Biomed. Signal Process. Control 7, 245–255 (2012). Elsevier
R.J. Martis, U.R. Achayra, L.C. Min, ECG beat classification using PCA, LDA, ICA, and discrete wavelet transform. Biomed. Signal Process. Control 8, 437–448 (2013). Elsevier
R. Jayasinghe, in ECG Workbook (Churchill Livingstone, Elsevier, 2012). ISBN 978-0-7295-4109-1
J.L. Martindale, D.F.M. Brown, in A Visual Guide to ECG Interpretation, 2nd edn. (Wolters Kluwer, 2017), ISBN 978-1-4963-2153-4
J.R. Hampton, D. Adlam, in The ECG in Practice, 6th edn. (Churchill Livingstone, Elsevier, 2013), ISBN 978-0-7020-4643-8
C.M. Bishop, in Neural Network for Pattern Recognition (Oxford, UK, Clarendon Press)
C. Leal Ramírez, O. Castillo, P. Melin, A. Rodríguez Díaz, Simulation of the bird age-structured population growth based on an interval type-2 fuzzy cellular structure. Inf. Sci. 181(3), 519–535 (2011)
N.R. Cázarez-Castro, L.T. Aguilar, O. Castillo, Designing Type-1 and Type-2 fuzzy logic controllers via Fuzzy Lyapunov Synthesis for nonsmooth mechanical systems. Eng. Appl. AI 25(5), 971–979 (2012)
O. Castillo, P. Melin, Intelligent systems with interval type-2 fuzzy logic. Int. J. Innov. Comput. Inf. Control 4(4), 771–783 (2008)
G.M. Mendez, O. Castillo, Interval type-2 TSK fuzzy logic systems using hybrid learning algorithm, in The 14th IEEE International Conference on Fuzzy Systems, FUZZ’05 (2005), pp. 230–235
P. Melin, O. Castillo, Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach. IEEE Trans. Ind. Electron. 48(5), 951–955 (2001)
E. Rubio, O. Castillo, F. Valdez, P. Melin, C. I. González, G. Martinez, An extension of the fuzzy possibilistic clustering algorithm using type-2 fuzzy logic techniques. Adv. Fuzzy Syst. 2017, 7094046:1–7094046:23 (2017)
L. Aguilar, P. Melin, O. Castillo, Intelligent control of a stepping motor drive using a hybrid neuro-fuzzy ANFIS approach. Appl. Soft Comput. 3(3), 209–219 (2003)
Patricia Melin, Oscar Castillo, Adaptive intelligent control of aircraft systems with a hybrid approach combining neural networks, fuzzy logic and fractal theory. Appl. Soft Comput. 3(4), 353–362 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Ramírez, E., Melin, P., Prado-Arechiga, G. (2020). Hybrid Model Based on Neural Networks and Fuzzy Logic for 2-Lead Cardiac Arrhythmia Classification. In: Castillo, O., Melin, P. (eds) Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine. Studies in Computational Intelligence, vol 827. Springer, Cham. https://doi.org/10.1007/978-3-030-34135-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-34135-0_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34134-3
Online ISBN: 978-3-030-34135-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)