Abstract
In the medical area, it is very important to have accurate results in diagnosis of diseases that people may suffer. This is why, there is a need to perform the optimization of the fuzzy classifier which provides the nocturnal blood pressure profile of patients, and which is important, due that with this diagnosis we may know if the patient is prone to have a cardiovascular event. This fuzzy system is designed using different membership functions, which are trapezoidal and Gaussian membership functions, in order to select the fuzzy system that provides better results when making the classification. Two bioinspired algorithms are used separately to test their performance, which are the Crow Search Algorithm and Chicken Swarm Optimization. Thirty experiments were performed varying the parameters in the algorithms and from which it can be concluded that the CSO provides better results when optimizing fuzzy systems with both types of membership functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
S. Kumar, G. Kaur, Detection of heart diseases using fuzzy logic. Int. J. Eng. Trends Technol. (IJETT) 4(6), 2694–2699 (2013)
X.Y. Djam, Y.H. Kimbi, Fuzzy expert system for the management of hypertension. Pac. J. Sci. Technol. 12(1), 390–402 (2011)
Q. Duodu, J.K. Panford, J. Ben Hafron-acquah, Designing algorithm for malaria diagnosis using fuzzy logic for treatment (AMDFLT) in Ghana. Int. J. Comput. Appl. 91(17) (2014)
J.C. Guzman, P. Melin, G. Prado-Arechiga, Design of an optimized fuzzy classifier for the diagnosis of blood pressure with a new computational method for expert rule optimization. Algorithms 10(3), 79 (2017)
X.S. Yang, M. Karamanoglu, X. He, Flower pollination algorithm: a novel approach for multiobjective optimization. Eng. Optim. 46(9), 1222–1237 (2014)
S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)
X.-S. Yang, Firefly Algorithm, Lévy flights and global optimization, in Research and Development in Intelligent Systems XXVI (2010), pp. 209–218
M.L. Lagunes, O. Castillo, J. Soria, Methodology for the optimization of a fuzzy controller using a bio-inspired algorithm, in Fuzzy Logic in Intelligent System Design (2018), pp. 131–137
J. Perez, P. Melin, O. Castillo, F. Valdez, C. Gonzalez, G. Martinez, Trajectory optimization for an autonomous mobile robot using the bat algorithm, in Fuzzy Logic in Intelligent System Design (2018), pp. 232–241
C. Peraza, F. Valdez, P. Melin, Optimization of intelligent controllers using a Type-1 and interval Type-2 fuzzy harmony search algorithm. Algorithms 10(3), 1–17 (2017)
O.R. Carvajal, O. Castillo, J. Soria, Optimization of membership function parameters for fuzzy controllers of an autonomous mobile robot using the flower pollination algorithm. J. Autom. Mob. Robot. Intell. Syst. 12(1), 1–23 (2018)
X. Meng, Y. Liu, X. Gao, H. Zhang, A new bio-inspired algorithm: chicken swarm optimization, in Advances in Swarm Intelligence (2014), pp. 86–94
A. Askarzadeh, A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169(Supplement C), 1–12 (2016)
J.M. Wilson, Essential cardiology: principles and practice. Tex. Heart Inst. J. 32(4), 616 (2005)
B. Wizner, B. Gryglewska, J. Gasowski, J. Kocemba, T. Grodzicki, Normal blood pressure values as perceived by normotensive and hypertensive subjects. J. Hum. Hypertens. 17(2), 87–91 (2003)
O.A. Carretero, S. Oparil, Essential Hypertension. Circulation 101(3), 329–335 (2000)
D. Bloomfield, Night time blood pressure dip. World J. Cardiol. 7(7), 373 (2015)
M. Brian, A. Dalpiaz, E. Matthews, S. Lennon-Edwards, D. Edwards, W. Farquhar, Dietary sodium and nocturnal blood pressure dipping in normotensive men and women. J. Hum. Hypertens. Hypertens. 31, 145–150 (2016)
L.E. Okamoto et al., Nocturnal blood pressure dipping in the hypertension of autonomic failure. Hypertension 53(2), 363–369 (2009)
E. Grossman, Ambulatory blood pressure monitoring in the diagnosis and management of hypertension. Diab. Care 36(Supplement 2), S307–S311 (2013)
O. Friedman, A.G. Logan, Nocturnal blood pressure profiles among normotensive, controlled hypertensive and refractory hypertensive subjects. Can. J. Cardiol. 25(9), e312–e316 (2009)
I. Miramontes, G. MartÃnez, P. Melin, G. Prado-Arechiga, A hybrid intelligent system model for hypertension diagnosis, in Nature-inspired design of hybrid intelligent systems, ed. by P. Melin, O. Castillo, J. Kacprzyk (Springer International Publishing, Cham, 2017), pp. 541–550
I. Miramontes, G. MartÃnez, P. Melin, G. Prado-Arechiga, A hybrid intelligent system model for hypertension risk diagnosis, in Fuzzy Logic in Intelligent System Design (2018), pp. 202–213
P. Melin, I. Miramontes, G. Prado-Arechiga, A hybrid model based on modular neural networks and fuzzy systems for classification of blood pressure and hypertension risk diagnosis. Expert Syst. Appl. 107, 146–164 (2018)
P. Melin, G. Prado-Arechiga, I. Miramontes, J.C. Guzman, Classification of nocturnal blood pressure profile using fuzzy systems. J. Hypertens. 36, e111–e112 (2018)
M.D. Feria-carot, J. Sobrino, Nocturnal hypertension. Hipertens. y riesgo Cardiovasc. 28(4), 143–148 (2011)
P. Melin, A. Mancilla, M. Lopez, O. Mendoza, A hybrid modular neural network architecture with fuzzy Sugeno integration for time series forecasting. Appl. Soft Comput. 7(4), 1217–1226 (2007)
P. Melin, O Castillo, Modelling, Simulation and Control of Non-linear Dynamical Systems: An Intelligent Approach Using Soft Computing and Fractal Theory (CRC Press, 2001)
P. Melin, D. Sánchez, O. Castillo, Genetic optimization of modular neural networks with fuzzy response integration for human recognition. Inf. Sci. 197, 1–19 (2012)
C.I. González, P. Melin, J.R. Castro, O. Mendoza, O. Castillo, An improved sobel edge detection method based on generalized type-2 fuzzy logic. Soft. Comput. 20(2), 773–784 (2016)
C.I. González, P. Melin, J.R. Castro, O. Castillo, O. Mendoza, Optimization of interval type-2 fuzzy systems for image edge detection. Appl. Soft Comput. 47, 631–643 (2016)
E. Ontiveros, P. Melin, O. Castillo, High order α-planes integration: a new approach to computational cost reduction of General Type-2 Fuzzy Systems. Eng. Appl. AI 74, 186–197 (2018)
P. Melin, D. Sánchez, Multi-objective optimization for modular granular neural networks applied to pattern recognition. Inf. Sci. 460–461, 594–610 (2018)
D. Sánchez, P. Melin, O. Castillo, Optimization of modular granular neural networks using a firefly algorithm for human recognition. Eng. Appl. AI 64, 172–186 (2017)
Acknowledgements
The authors would like to express thank to the Consejo Nacional de Ciencia y Tecnologia and Tecnologico Nacional de Mexico/Tijuana Institute of Technology for the facilities and resources granted for the development of this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Miramontes, I., Melin, P., Prado-Arechiga, G. (2020). Comparative Study of Bio-inspired Algorithms Applied in the Optimization of Fuzzy Systems. In: Castillo, O., Melin, P. (eds) Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine. Studies in Computational Intelligence, vol 827. Springer, Cham. https://doi.org/10.1007/978-3-030-34135-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-34135-0_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34134-3
Online ISBN: 978-3-030-34135-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)