Abstract
Through the advance of technology, every day new methods or computational techniques emerge that allow us to solve problems in different areas, such as medicine, engineering, even in any industrial process. Optimization is of vital importance in this industry, the main objective being to find the best possible solution to the problem. In this work we propose to use the Grey Wolf Optimizer (GWO), which is a metaheuristic, which is inspired by the hunting behavior and leadership hierarchy of grey wolves, in addition to analyzing and explaining the proposed methodology for the optimization of fuzzy controllers for mobile autonomous robots.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
X.-S. Yang, M. Karamanoglu, Swarm intelligence and bio-inspired computation: an overview. Swarm Intell. Bio-Inspired Comput. pp. 3–23 (Yang)
P. Gupta, R. Cambini, S.S. Appadoo, Recent advances in optimization theory and applications. Ann. Oper. Res. (2018). https://doi.org/10.1007/s10479-018-2984-yDO
X.S. Yang, M. Karamanoglu, X. He, Flower pollination algorithm: a novel approach for multiobjective optimization. Eng. Optim. 46(9), 1222–1237 (2014)
X.-S. Yang, Bat algorithm: literature review and applications. Int. J. Bio-Inspired Comput. 5(3), 141–149 (2013)
X.-S. Yang, Firefly algorithm, Lévy flights and global optimization, in Research and Development in Intelligent Systems XXVI (2010), pp. 209–218
X.S. Yang, S. Deb, Cuckoo search via Lévy flights, in Proceeding of World Congress on Nature and Biologically Inspired Computing (NaBIC 2009), pp. 210–214
S. Das, A. Biswas, S. Dasgupta, A. Abraham, Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications, in Foundations of Computational Intelligence vol. 3: Global Optimization (Springer, Berlin, 2009)
D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39, 459–471 (2007)
M. Dorigo, K. Socha, An introduction to ant colony optimization, in Handbook of Metaheuristics, vol 26, no l (IRIDIA, 2006, Brussels), ISSN 1781-3794
J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of IEEE International Conference on Neural Networks (1995), pp. 1942–1948
D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (AddisonWesley, Boston, MA, 1987)
S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)
C. Muro, R. Escobedo, L. Spector, R. Coppinger, Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behav. Process. 88, 192–197 (2011)
L. Zadeh, Fuzzy logic. IEEE Comput. Mag. 1, 83–93 (1988)
L. Zadeh, The concept of a linguistic variable and its application to approximate reasoning—I. Inform. Sci. 8, 199–249 (1975)
L. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)
O. Castillo, P. Melin, O. Montiel, R. Sepulveda, W. Pedrycz, Theoretical Advances and Applications of Fuzzy Logic and Soft Computing (Springer, Tijuana, BC, 2007)
R. Martinez, O. Castillo, L.T. Aguilar, Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Inf. Sci. 179(13), 2158–2174 (2009)
L. Rodriguez, O. Castillo, J. Soria, A study of parameters of the grey wolf optimizer algorithm for dynamic adaptation with fuzzy logic, in Nature-Inspired Design of Hybrid Intelligent Systems (Springer, Tijuana, Mexico, 2017), pp. 371–390
O. Castillo, R. Martínez-Marroquín, P. Melin, F. Valdez, J. Soria, Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot. Inf. Sci. 192, 19–38 (2012)
O. Castillo, H. Neyoy, J. Soria, M. García, F. Valdez, Dynamic fuzzy logic parameter tuning for ACO and its application in the fuzzy logic control of an autonomous mobile robot (Int. J. Adv. Robot, Syst, 2013)
O. Carvajal, O. Castillo, J. Soria, Optimization of membership function parameters for fuzzy controllers of an autonomous mobile robot using the flower pollination algorithm. J. Autom. Mob. Robot. Intell. Syst. 12(1), 44–49 (2018)
M. Sanchez, O. Castillo, J. Castro, Generalized type-2 fuzzy systems for controlling a mobile robot and a performance comparison with interval type-2 and type-1 fuzzy systems. Expert Syst. Appl. 42, 5904–5914 (2015)
C. Soto, F. Valdez, O. Castillo, A review of dynamic parameter adaptation methods for the firefly algorithm, in Nature-Inspired Design of Hybrid Intelligent Systems (Springer, Tijuana, BC, 2007), pp. 285–295
L. Astudillo, P. Melin, O. Castillo, Chemical Optimization Algorithm for Fuzzy Controller Design (Springer, Tijuana, Mexico, 2014)
A. Sombra, F. Valdez, P. Melin, O. Castillo, A new gravitational search algorithm using fuzzy logic to parameter adaptation, in IEEE Congress on Evolutionary Computation, Cancun, México (2013), pp. 1068–1074
F. Valdez, P. Melin, O. Castillo, Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making, in IEEE International Conference on Fuzzy Systems (2009), pp. 2114–2119
F. Olivas, F. Valdez, O. Castillo, C. Gonzales, G. Martinez, P. Melin, Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Appl. Soft Comput. 53, 74–87 (2016)
T.Y. Abdalla, A. Abdulkareem, A PSO optimized fuzzy control scheme for mobile robot path tracking. Int. J. Comput. Appl. 76(2), 11–17 (2013). https://doi.org/10.5120/13217-0608
C. Leal Ramírez, O. Castillo, P. Melin, A. Rodríguez Díaz, Simulation of the bird age-structured population growth based on an interval type-2 fuzzy cellular structure. Inf. Sci. 181(3), 519–535 (2011)
N.R. Cázarez-Castro, L.T. Aguilar, O. Castillo, Designing type-1 and type-2 fuzzy logic controllers via fuzzy Lyapunov synthesis for nonsmooth mechanical systems. Eng. Appl. AI 25(5), 971–979 (2012)
O. Castillo, P. Melin, Intelligent systems with interval type-2 fuzzy logic. Int. J. Innov. Comput. Inf. Control 4(4), 771–783 (2008)
C.I. González, P. Melin, J.R. Castro, O. Mendoza, O. Castillo, An improved Sobel edge detection method based on generalized type-2 fuzzy logic. Soft. Comput. 20(2), 773–784 (2016)
C.I. González, P. Melin, J.R. Castro, O. Castillo, Olivia Mendoza: optimization of interval type-2 fuzzy systems for image edge detection. Appl. Soft Comput. 47, 631–643 (2016)
L. Aguilar, P. Melin, O. Castillo, Intelligent control of a stepping motor drive using a hybrid neuro-fuzzy ANFIS approach. Appl. Soft Comput. 3(3), 209–219 (2003)
P. Melin, O. Castillo, Adaptive intelligent control of aircraft systems with a hybrid approach combining neural networks, fuzzy logic and fractal theory. Appl. Soft Comput. 3(4), 353–362 (2003)
P. Melin, J. Amezcua, F. Valdez, O. Castillo, A new neural network model based on the LVQ algorithm for multi-class classification of arrhythmias. Inf. Sci. 279, 483–497 (2014)
P. Melin, O. Castillo, Modelling, Simulation and Control of Non-linear Dynamical Systems: An Intelligent Approach Using Soft Computing and Fractal Theory (CRC Press, Boca Raton, 2001)
P. Melin, D. Sánchez, O. Castillo, Genetic optimization of modular neural networks with fuzzy response integration for human recognition. Inf. Sci. 197, 1–19 (2012)
Acknowledgements
It is widely appreciated to the Consejo Nacional de Ciencia y Tecnologia and Tecnologico Nacional de Mexico/Tijuana Institute of Technology for the time, resource, space and facilities provided for the development of this work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Hernández, E., Castillo, O., Soria, J. (2020). Optimization of Fuzzy Controllers for Autonomous Mobile Robots Using the Grey Wolf Optimizer. In: Castillo, O., Melin, P. (eds) Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine. Studies in Computational Intelligence, vol 827. Springer, Cham. https://doi.org/10.1007/978-3-030-34135-0_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-34135-0_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34134-3
Online ISBN: 978-3-030-34135-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)