Skip to main content

Comparison of Fuzzy Controller Optimization with Dynamic Parameter Adjustment Based on of Type-1 and Type-2 Fuzzy Logic

  • Chapter
  • First Online:
Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine

Part of the book series: Studies in Computational Intelligence ((SCI,volume 827))

  • 385 Accesses

Abstract

This paper presents the comparison of fuzzy controller optimization results using dynamic parameter adjustment Type-1 (T1) and Interval Type-2 (T2) fuzzy logic to the Firefly Algorithm (FA). The FA is used for optimizations parameters of the membership functions in the fuzzy controllers. The dynamic adjustment is applied to the randomness parameter of the search space, which represents the exploration of the method, avoiding stagnation or premature convergence. The FA generates the values that the parameters of the membership functions take for optimization use in the fuzzy systems for control. The control plants have one or more input variables that are processed and result in one or more output variables, it would be very difficult to model the human reasoning in equations to achieve a machine acquires the knowledge acquired by humans. For that reason the fuzzy logic that generates that insertity is used as if it were human reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. X.S. Yang, X. He, Firefly algorithm: recent advances and applications. Int. J. Swarm Intell. 1(1), 36 (2013)

    Article  Google Scholar 

  2. X.-S. Yang, Nature-Inspired Metaheuristic Algorithms. (Luniver Press, 2010)

    Google Scholar 

  3. L. Amador-Angulo, O. Castillo, Comparative analysis of designing differents types of membership functions using bee colony optimization in the stabilization of fuzzy controllers, in Nature Inspired Design of Hybrid Intelligent Systems, vol. 667 (Springer, Berlin, 2017), pp. 551–571

    Google Scholar 

  4. M.L. Lagunes, O. Castillo, J. Soria, Methodology for the optimization of a fuzzy controller using a bio-inspired algorithm. Fuzzy Log. Intell. Syst. Des. 648, 131–137 (2017). Springer

    Article  Google Scholar 

  5. E. Bernal, O. Castillo, J. Soria, Imperialist competitive algorithm with dynamic parameter adaptation applied to the optimization of mathematical functions. Nat. Inspired Des. Hybrid Intell. Syst. 667, 329–341 (2017). Springer

    Article  Google Scholar 

  6. L. Rodríguez, O. Castillo, J. Soria, A study of parameters of the grey wolf optimizer algorithm for dynamic adaptation with fuzzy logic. Nat. Inspired Des. Hybrid Intell. Syst. 667, 371–390 (2017). Springer

    Article  Google Scholar 

  7. C. Peraza, F. Valdez, O. Castillo, Improved method based on type-2 fuzzy logic for the adaptive harmony search algorithm. Fuzzy Log. Augment. Neural Optim. Algorithms 749, 29–37 (2018). Springer

    Google Scholar 

  8. M.L. Lagunes, O. Castillo, F. Valdez, J. Soria, P. Melin, Parameter optimization for membership functions of type-2 fuzzy controllers for autonomous mobile robots using the firefly algorithm. Fuzzy Inf. Process. 831, 569–579 (2018). NAFIPS

    Article  Google Scholar 

  9. M.L. Lagunes, O. Castillo, J. Soria, Optimization of membership function parameters for fuzzy controllers of an autonomous mobile robot using the firefly algorithm. Fuzzy Log. Augment. Neural Optim. Algorithms 749, 199–206 (2018). Springer

    Google Scholar 

  10. L.A. Zadeh, Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

  11. L.A. Zadeh, Fuzzy logic, Computer (Long. Beach. Calif), vol. 21, no. 4, pp. 83–93, (Apr. 1988)

    Article  Google Scholar 

  12. L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-III. Inf. Sci. (Ny) 9(1), 43–80 (1975)

    Article  MathSciNet  Google Scholar 

  13. N.N. Karnik, J.M. Mendel, Q. Liang, Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7(6), 643–658 (1999)

    Article  Google Scholar 

  14. Q. Liang, J.M. Mendel, Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)

    Article  Google Scholar 

  15. O. Castillo, P. Melin, J. Kacprzyk, W. Pedrycz, Type-2 fuzzy logic: theory and applications, in 2007 IEEE International Conference on Granular Computing (GRC 2007), (2007), pp. 145–145

    Google Scholar 

  16. J. Pérez, F. Valdez, O. Castillo, Modification of the bat algorithm using type-2 fuzzy logic for dynamical parameter adaptation. Nat. Inspired Des. Hybrid Intell. Syst. 667, 343–355 (2017). Springer

    Article  Google Scholar 

  17. C. Soto, F. Valdez, O. Castillo, A review of dynamic parameter adaptation methods for the firefly algorithm. Nat. Inspired Des. Hybrid Intell. Syst. 667, 285–295 (2017). Springer

    Article  Google Scholar 

  18. C. Solano-Aragón, O. Castillo, Optimization of benchmark mathematical functions using the firefly algorithm. Recent. Adv. Hybrid Approaches Des. Intell. Syst. 547, 177–189 (2014). Springer

    Article  Google Scholar 

  19. P. Ochoa, O. Castillo, J. Soria, Fuzzy differential evolution method with dynamic parameter adaptation using type-2 fuzzy logic, in Intelligent Systems, 8th International Conference on, IEEE, (2016), pp. 113–118

    Google Scholar 

  20. Water Level Control in a Tank—MATLAB & Simulink Example—MathWorks America Latina. [Online]. Available: https://la.mathworks.com/help/fuzzy/examples/water-level-control-in-a-tank.html. Accessed 04 Jul 2018

  21. Temperature Control in a Shower—MATLAB & Simulink—MathWorks America Latina. [Online]. Available: https://la.mathworks.com/help/fuzzy/temperature-control-in-a-shower.html. Accessed 04 Jul 2018

  22. P. Melin, C.I. González, J.R. Castro, O. Mendoza, O. Castillo, Edge-detection method for image processing based on generalized type-2 fuzzy logic. IEEE Trans. Fuzzy Syst. 22(6), 1515–1525 (2014)

    Article  Google Scholar 

  23. C.I. González, P. Melin, J.R. Castro, O. Castillo, O. Mendoza, Optimization of interval type-2 fuzzy systems for image edge detection. Appl. Soft Comput. 47, 631–643 (2016)

    Article  Google Scholar 

  24. C.I. González, P. Melin, J.R. Castro, O. Mendoza, O. Castillo, An improved sobel edge detection method based on generalized type-2 fuzzy logic. Soft. Comput. 20(2), 773–784 (2016)

    Article  Google Scholar 

  25. E. Ontiveros, P. Melin, O. Castillo, High order α-planes integration: a new approach to computational cost reduction of general Type-2 fuzzy systems. Eng. Appl. AI 74, 186–197 (2018)

    Article  Google Scholar 

  26. C. Leal Ramírez, O. Castillo, P. Melin, A. Rodríguez Díaz, Simulation of the bird age-structured population growth based on an interval type-2 fuzzy cellular structure. Inf. Sci. 181(3), 519–535 (2011)

    Article  MathSciNet  Google Scholar 

  27. N.R. Cázarez-Castro, L.T. Aguilar, O. Castillo, Designing type-1 and type-2 fuzzy logic controllers via fuzzy lyapunov synthesis for nonsmooth mechanical systems. Eng. Appl. of AI 25(5), 971–979 (2012)

    Article  Google Scholar 

  28. O. Castillo, P. Melin, Intelligent systems with interval type-2 fuzzy logic. Int. J. Innov. Comput. Inf. Control 4(4), 771–783 (2008)

    Google Scholar 

  29. G.M. Mendez, O. Castillo, Interval type-2 TSK fuzzy logic systems using hybrid learning algorithm, Fuzzy Systems, 2005, in The 14th IEEE International Conference on FUZZ’05, 230–235

    Google Scholar 

  30. P. Melin, O. Castillo, Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach. IEEE Trans. Ind. Electr. 48(5), 951–955

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lagunes, M.L., Castillo, O., Valdez, F., Soria, J. (2020). Comparison of Fuzzy Controller Optimization with Dynamic Parameter Adjustment Based on of Type-1 and Type-2 Fuzzy Logic. In: Castillo, O., Melin, P. (eds) Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine. Studies in Computational Intelligence, vol 827. Springer, Cham. https://doi.org/10.1007/978-3-030-34135-0_4

Download citation

Publish with us

Policies and ethics