Abstract
In this paper we propose the optimization of a convolutional neural network (CNN) using the Fuzzy Gravitational Search Algorithm method (FGSA). The FGSA is inspired in extension of the Gravitational Search Algorithm (GSA) using fuzzy logic and this method is used to obtain the number of images per block that will enter in the training phase. The optimized CNN is applied for pattern recognition using the 10 handwritten numbers of the MINIST database. The model of the CNN model presented in this paper can be applied for any recognition or image classification application. In addition, the recognition rate achieved with the CNN optimized by the FGSA was compared against the results obtained with the non-optimized CNN.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
L.D. Le Cun Jackel, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, B. Le Cun, J. Denker, D. Henderson, Handwritten digit recognition with a back-propagation network. Adv. Neural Inf. Process. Syst., pp. 396–404 (1990)
D. Sánchez, P. Melin, O. Castillo, Fuzzy adaptation for particle swarm optimization for modular neural networks applied to iris recognition. NAFIPS 648, 104–114 (2017)
F. Valdez, O. Castillo, P. Melin, Ant colony optimization for the design of Modular Neural Networks in pattern recognition. Proc. Int. Jt. Conf. Neural Netw. pp. 163–168 (2016 Oct)
C.I. Gonzalez, J.R. Castro, O. Mendoza, P. Melin, General Type-2 fuzzy edge detector applied on face recognition system using neural networks, in 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 2325–2330 (2016)
G.E. Martínez, P. Melin, O.D. Mendoza, O. Castillo, Face recognition with a sobel edge detector and the Choquet integral as integration method in a modular neural networks, in Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization, ed. by P. Melin, O. Castillo, J. Kacprzyk (Springer International Publishing, Cham, 2015), pp. 59–70
P. Melin, I. Miramontes, G. Prado-Arechiga, A hybrid model based on modular neural networks and fuzzy systems for classification of blood pressure and hypertension risk diagnosis. Expert Syst. Appl. 107, 146–164 (2018)
F. Valdez, P. Melin, O. Castillo, Modular Neural Networks architecture optimization with a new nature inspired method using a fuzzy combination of Particle Swarm Optimization and Genetic Algorithms. Inf. Sci. (Ny) 270, 143–153 (2014)
P. Melin, D. Sánchez, O. Castillo, Genetic optimization of modular neural networks with fuzzy response integration for human recognition. Inf. Sci. (Ny) 197, 1–19 (2012)
P. Melin, D. Sánchez, Multi-objective optimization for modular granular neural networks applied to pattern recognition. Inf. Sci. (Ny) 460–461, 594–610 (2018)
D. Sánchez, P. Melin, O. Castillo, Engineering Applications of Artificial Intelligence Optimization of modular granular neural networks using a firefly algorithm for human recognition. Eng. Appl. Artif. Intell. 64(Oct 2016), 172–186 (2017)
C.I. Gonzalez, P. Melin, J.R. Castro, O. Mendoza, O. Castillo, An improved sobel edge detection method based on generalized type-2 fuzzy logic. Soft Comput. J. 20(2), 773–784 (2016)
C.I. Gonzalez, J.R. Castro, O. Mendoza, P. Melin, O. Castillo, Optimization by cuckoo search of interval type-2 fuzzy logic systems for edge detection. Stud. Fuzziness Soft Comput. 342, 141–154 (2016)
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2323 (1998)
A. Frome, G. Cheung, A. Abdulkader, M. Zennaro, B. Wu, A. Bissacco, H. Adam, H. Neven, L. Vincent, Large-scale privacy protection in google street view. Evaluation, pp. 2–9 (2009)
R. Hadsell, P. Sermanet, J. Ben, A. Erkan, M. Scoffier, K. Kavukcuoglu, U. Muller, Y. LeCun, Learning long-range vision for autonomous off-road driving. J. F. Robot. 26(2), 120–144 (2009)
A. Sombra, F. Valdez, P. Melin, O. Castillo, A new gravitational search algorithm using fuzzy logic to parameter adaptation, in 2013 IEEE Congress on Evolutionary Computation no. 3, pp. 1068–1074 (2013)
E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: a gravitational search algorithm. Inf. Sci. (Ny) 179(13), 2232–2248 (2009)
O.P. Verma, R. Sharma, Newtonian gravitational edge detection using gravitational search algorithm. Int. Conf. Commun. Syst. Netw. Technol., pp. 184–188 (2012)
A. Hatamlou, S. Abdullah, Z. Othman, Gravitational search algorithm with heuristic search for clustering problems. Conf. Data Min. Optim., pp. 190–193, (2011 June)
S. Mirjalili, S.Z. Mohd Hashim, H. Moradian Sardroudi, Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl. Math. Comput. 218(22), 11125–11137 (2012)
S. Mirjalili, S.Z.M. Hashim, A new hybrid PSOGSA algorithm for function optimization, in Proceedings of ICCIA 2010–2010 International Conference on Computer and Information Application, no. 1, pp. 374–377, 2010
Y. LeCun, Y. Bengio, Convolution networks for images, speech, and time-series. Igarss 2014(1), 1–5 (1998)
Y. Bengio, P. Lamblin, Greedy layer-wise training of deep networks. Adv. Neural Inf. Process. Syst. (1), 153–160 (2007)
K. Chellapilla, S. Puri, P. Simard, High performance convolutional neural networks for document processing. Int. Work. Front. Handwrit. Recognit. (2006)
V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann machines, in Proceedings of the 27th International Conference on Machine Learning, no. 3, pp. 807–814 (2010)
M. Ranzato, F.J. Huang, Y-L. Boureau, Y. LeCun, Unsupervised learning of invariant feature hierarchies applications to object recognition, in IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)
J. Yang, K. Yu, Y. Gong, T.H. Beckman, Linear spatial pyramid matching using sparse coding for image classification, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1794–1801 (2009)
T. Wang, D.J. Wu, A. Coates, A.Y. Ng, End-to-end text recognition with convolutional neural networks, in ICPR, International Conference on Pattern Recognition, pp. 3304–3308 (2012)
P. Kim, MATLAB Deep Learning (2017)
R. Venkatesan, B. Li, Convolutional Neural Networks in Visual Computing: A Concise Guide (CRC Press, Boca Raton, 2017)
L. Lu, Y. Zheng, G. Carneiro, L. Yang, Deep Learning and Convolutional Neural Networks for Medical Image Computing (2017)
J. Walker, R. Resnick, D. Halliday, Fundamentals of Physics (Wiley, New York, 2008)
B. González, F. Valdez, P. Melin, G. Prado-Arechiga, Fuzzy logic in the gravitational search algorithm for the optimization of modular neural networks in pattern recognition. Expert Syst. Appl. 42(14), 5839–5847 (2015)
B. González, F. Valdez, P. Melin, G. Prado-Arechiga, Fuzzy logic in the gravitational search algorithm enhanced using fuzzy logic with dynamic alpha parameter value adaptation for the optimization of modular neural networks in echocardiogram recognition. Appl. Soft Comput. J. 37, 245–254 (2015)
C. Leal Ramírez, O. Castillo, P. Melin, A. Rodríguez Díaz, Simulation of the bird age-structured population growth based on an interval type-2 fuzzy cellular structure. Inf. Sci. 181(3), 519–535 (2011)
N.R. Cázarez-Castro, L.T. Aguilar, O. Castillo, Designing Type-1 and Type-2 Fuzzy logic controllers via Fuzzy Lyapunov synthesis for nonsmooth mechanical systems. Eng. Appl. AI 25(5), 971–979 (2012)
O. Castillo P. Melin, Intelligent systems with interval type-2 fuzzy logic. Int. J. Innov. Comput. Inf. Control 4(4), 771–783 (2008)
G.M. Mendez, O. Castillo, Interval type-2 TSK fuzzy logic systems using hybrid learning algorithm, in The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ’05, pp. 230–235
P. Melin, O. Castillo, Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach. IEEE Trans. Ind. Electron. 48(5), 951–955
P. Melin, A. Mancilla, M. Lopez, O. Mendoza, A hybrid modular neural network architecture with fuzzy Sugeno integration for time series forecasting. Appl. Soft Comput. 7(4), 1217–1226 (2007)
P. Melin, O. Castillo, Modelling, Simulation and Control of Non-Linear Dynamical Systems: an Intelligent Approach Using Soft Computing and Fractal Theory (CRC Press, Boca Raton, 2001)
P. Melin, G Prado-Arechiga: New Hybrid Intelligent Systems for Diagnosis and Risk Evaluation of Arterial Hypertension (Springer, Switzerland, 2018)
P. Melin, C.I. González, J.R. Castro, O. Mendoza, O. Castillo, Edge-detection method for image processing based on generalized Type-2 fuzzy logic. IEEE Trans. Fuzzy Syst. 22(6), 1515–1525 (2014)
Acknowledgements
We thank our sponsor CONACYT and the Tijuana Institute of Technology for the financial support provided with the scholarship number 816488.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Poma, Y., Melin, P., González, C.I., Martinez, G.E. (2020). Optimal Recognition Model Based on Convolutional Neural Networks and Fuzzy Gravitational Search Algorithm Method. In: Castillo, O., Melin, P. (eds) Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine. Studies in Computational Intelligence, vol 827. Springer, Cham. https://doi.org/10.1007/978-3-030-34135-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-34135-0_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34134-3
Online ISBN: 978-3-030-34135-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)