Abstract
In this paper a fuzzy search algorithm harmony (FHS) is presented. The main difference between previous work is that this method uses a fuzzy system for dynamic parameter adaptation of the two main parameters throughout the iterations of the algorithm, which are: harmony memory accepting (HMR) and pitch adjustment (PArate), with the rules of the fuzzy system control the intensification and diversification of the search space is achieved. This method was applied to the mathematical functions provided by the CEC 2017, which are unimodal, multimodal, hybrid and composite functions to verify the efficiency of the proposed method. A comparison is presented to verify the results obtained with the original harmony search algorithm and the fuzzy harmony search algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
F. Olivas, F. Valdez, O. Castillo, P. Melin, Theory and background, in Dynamic Parameter Adaptation for Meta-Heuristic Optimization Algorithms Through Type-2 Fuzzy Logic (pp. 3–10). (Springer International Publishing, Cham, 2018)
L. Amador-Angulo, O. Castillo, A new fuzzy bee colony optimization with dynamic adaptation of parameters using interval type-2 fuzzy logic for tuning fuzzy controllers. Soft. Comput. 22(2), 571–594 (2018)
C. Caraveo, F. Valdez, O. Castillo, A new optimization meta-heuristic algorithm based on self-defense mechanism of the plants with three reproduction operators. Soft Comput. (Apr. 2018)
C.-M. Wang, Y.-F. Huang, Self-adaptive harmony search algorithm for optimization. Expert Syst. Appl. 37(4), 2826–2837 (2010)
K.S. Lee, Z.W. Geem, A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 194(36–38), 3902–3933 (2005)
P. Ochoa, O. Castillo, J. Soria, Interval Type-2 fuzzy logic dynamic mutation and crossover parameter adaptation in a fuzzy differential evolution method, in Intuitionistic Fuzziness and Other Intelligent Theories and Their Applications, vol. 757, ed. by M. Hadjiski, K.T. Atanassov (Springer International Publishing, Cham, 2019), pp. 81–94
D. Zou, L. Gao, Y. Ge, P. Wu, A novel global harmony search algorithm for chemical equation balancing, in 2010 International Conference On Computer Design and Applications, Qinhuangdao, China, pp. V2-1–V2-5 (2010)
R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39–43 (1995)
E. Bernal, O. Castillo, J. Soria, F. Valdez, Imperialist competitive algorithm with dynamic parameter adaptation using fuzzy logic applied to the optimization of mathematical functions. Algorithms 10(1), 18 (2017)
E. Bernal, O. Castillo, J. Soria, F. Valdez, Galactic swarm optimization with adaptation of parameters using fuzzy logic for the optimization of mathematical functions, in Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications, vol. 749, ed. by O. Castillo, P. Melin, J. Kacprzyk (Springer International Publishing, Cham, 2018), pp. 131–140
Z.W. Geem, K.-B. Sim, Parameter-setting-free harmony search algorithm. Appl. Math. Comput. 217(8), 3881–3889 (2010)
P. Ochoa, O. Castillo, J. Soria, Differential evolution algorithm using a dynamic crossover parameter with fuzzy logic applied for the CEC 2015 benchmark functions, in Fuzzy Information Processing, vol. 831, ed. by G.A. Barreto, R. Coelho (Springer International Publishing, Cham, 2018), pp. 580–591
O. Castillo, P. Ochoa, J. Soria, Differential evolution with fuzzy logic for dynamic adaptation of parameters in mathematical function optimization, in Imprecision and Uncertainty in Information Representation and Processing, vol. 332, ed. by P. Angelov, S. Sotirov (Springer International Publishing, Cham, 2016), pp. 361–374
M.H. Mashinchi, M.A. Orgun, M. Mashinchi, W. Pedrycz, A tabu-harmony search-based approach to fuzzy linear regression. IEEE Trans. Fuzzy Syst. 19(3), 432–448 (2011)
O. Castillo, C. Soto, F. Valdez, A review of fuzzy and mathematic methods for dynamic parameter adaptation in the firefly algorithm, in Advances in Data Analysis with Computational Intelligence Methods, vol. 738, ed. by A.E. Gawęda, J. Kacprzyk, L. Rutkowski, G.G. Yen (Springer International Publishing, Cham, 2018), pp. 311–321
B. González, P. Melin, F. Valdez, G. Prado-Arechiga, Ensemble neural network optimization using a gravitational search algorithm with interval type-1 and type-2 fuzzy parameter adaptation in pattern recognition applications, in Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications, vol. 749, ed. by O. Castillo, P. Melin, J. Kacprzyk (Springer International Publishing, Cham, 2018), pp. 17–27
J. Barraza, L. RodrÃguez, O. Castillo, P. Melin, F. Valdez, A new hybridization approach between the fireworks algorithm and grey wolf optimizer algorithm. J. Optim. 2018, 1–18 (2018)
M.L. Lagunes, O. Castillo, J. Soria, M. Garcia, F. Valdez, Optimization of granulation for fuzzy controllers of autonomous mobile robots using the firefly algorithm. Granul. Comput. (July 2018)
M. Mahdavi, M. Fesanghary, E. Damangir, An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 188(2), 1567–1579 (2007)
Y.Y. Moon, Z.W. Geem, G.-T. Han, Vanishing point detection for self-driving car using harmony search algorithm. Swarm Evol. Comput. 41, 111–119 (2018)
Y.-H. Kim, Y. Yoon, Z.W. Geem, A comparison study of harmony search and genetic algorithm for the max-cut problem. Swarm Evol. Comput. (Feb 2018)
Z.W. Geem, S.Y. Chung, J.-H. Kim, Improved optimization for wastewater treatment and reuse system using computational intelligence. Complexity 2018, 1–8 (2018)
A.W. Mohamed, A.A. Hadi, A.M. Fattouh, K.M. Jambi, LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems, in 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, San Sebastián, Spain, pp. 145–152 (2017)
J. Brest, M. S. Maucec, B. Boskovic, Single objective real-parameter optimization: Algorithm jSO, in 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, San Sebastián, Spain, pp. 1311–1318 (2017)
D. Manjarres et al., A survey on applications of the harmony search algorithm. Eng. Appl. Artif. Intell. 26(8), 1818–1831 (2013)
Cinthia Peraza, Fevrier Valdez, Patricia Melin, Optimization of intelligent controllers using a type-1 and interval type-2 fuzzy harmony search algorithm. Algorithms 10(3), 82 (2017)
C. Peraza, F. Valdez, M. Garcia, P. Melin, O. Castillo, A new fuzzy harmony search algorithm using fuzzy logic for dynamic parameter adaptation. Algorithms 9(4), 69 (2016)
C. Peraza, F. Valdez, J.R. Castro, O. Castillo, Fuzzy dynamic parameter adaptation in the harmony search algorithm for the optimization of the ball and beam controller. Adv. Oper. Res. 2018, 1–16 (2018)
C. Peraza, F. Valdez, O. Castillo, Study on the use of type-1 and interval type-2 fuzzy systems applied to benchmark functions using the fuzzy harmony search algorithm, in Fuzzy logic in intelligent system design, vol. 648, ed. by P. Melin, O. Castillo, J. Kacprzyk, M. Reformat, W. Melek (Springer International Publishing, Cham, 2018), pp. 94–103
C. Peraza, F. Valdez, O. Castillo, Improved method based on type-2 fuzzy logic for the adaptive harmony search algorithm, in Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications, vol. 749, ed. by O. Castillo, P. Melin, J. Kacprzyk (Springer International Publishing, Cham, 2018), pp. 29–37
C. Leal RamÃrez, O. Castillo, P. Melin, A. RodrÃguez DÃaz, Simulation of the bird age-structured population growth based on an interval type-2 fuzzy cellular structure. Inf. Sci. 181(3), 519–535 (2011)
N.R. Cázarez-Castro, L.T. Aguilar, O. Castillo, Designing type-1 and type-2 fuzzy logic controllers via fuzzy lyapunov synthesis for nonsmooth mechanical systems. Eng. Appl. of AI 25(5), 971–979 (2012)
O. Castillo, P. Melin, Intelligent systems with interval type-2 fuzzy logic. Int. J. Innov. Comput. Inf. Control 4(4), 771–783 (2008)
G.M. Mendez, O. Castillo, Interval type-2 TSK fuzzy logic systems using hybrid learning algorithm, in The 14th IEEE International Conference on Fuzzy Systems FUZZ’05, 230–235 (2005)
P. Melin, O. Castillo, Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach. IEEE Trans. Ind. Electr. 48(5), 951–955
E. Rubio, O. Castillo, F. Valdez, P. Melin, C.I. González, G. Martinez, An extension of the fuzzy possibilistic clustering algorithm using type-2 fuzzy logic techniques. Adv. Fuzzy Syst., 7094046:1–7094046:23 (2017)
Acknowledgements
We would like to express our thanks to CONACYT and Tijuana Institute of Technology for the facilities and resources granted for the development of this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Peraza, C., Valdez, F., Castillo, O. (2020). Harmony Search with Dynamic Adaptation of Parameters for the Optimization of a Benchmark Set of Functions. In: Castillo, O., Melin, P. (eds) Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine. Studies in Computational Intelligence, vol 827. Springer, Cham. https://doi.org/10.1007/978-3-030-34135-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-34135-0_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34134-3
Online ISBN: 978-3-030-34135-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)