Skip to main content

LSCMiner: Efficient Low Support Closed Itemsets Mining

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2019 (WISE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11881))

Included in the following conference series:

  • 2388 Accesses

Abstract

Itemsets with relatively low support values are important since they usually suggest highly confident association rules, which are useful in applications such as recommendation systems and medical data analysis. However, most existing algorithms are mainly designed to mine frequent patterns and thus are time consuming in generating low support patterns. There are also a few algorithms focus on low support patterns but not efficient enough. Therefore, we propose here a low support closed pattern mining algorithm, utilizing top-down lattice traversing and novel closeness checking/pruning techniques. Extensive experiments show that our method is much more efficient to mine low support closed patterns than available alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adda, M., Wu, L., Feng, Y.: Rare itemset mining. In: Sixth International Conference on Machine Learning and Applications, ICMLA 2007, pp. 73–80. IEEE (2007)

    Google Scholar 

  2. Burdick, D., Calimlim, M., Gehrke, J.: Mafia: a maximal frequent itemset algorithm for transactional databases. In: Proceedings of the 17th International Conference on Data Engineering, pp. 443–452. IEEE (2001)

    Google Scholar 

  3. Fang, G., Pandey, G., Wang, W., Gupta, M., Steinbach, M., Kumar, V.: Mining low-support discriminative patterns from dense and high-dimensional data. IEEE Trans. Knowl. Data Eng. 24(2), 279–294 (2012)

    Article  Google Scholar 

  4. Fournier-Viger, P., et al.: The SPMF open-source data mining library version 2. In: Berendt, B., et al. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9853, pp. 36–40. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46131-1_8

    Chapter  Google Scholar 

  5. Gupta, A., Mittal, A., Bhattacharya, A.: Minimally infrequent itemset mining using pattern-growth paradigm and residual trees. In: Proceedings of the 17th International Conference on Management of Data, p. 13 (2011)

    Google Scholar 

  6. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: ACM Sigmod Record, vol. 29, pp. 1–12. ACM (2000)

    Google Scholar 

  7. Hoque, N., Nath, B., Bhattacharyya, D.: An efficient approach on rare association rule mining. In: Bansal, J., Singh, P., Deep, K., Pant, M., Nagar, A. (eds.) BIC-TA 2012, vol. 201, pp. 193–203. Springer, India (2013). https://doi.org/10.1007/978-81-322-1038-2_17

    Chapter  Google Scholar 

  8. Kamehkhosh, I., Jannach, D., Ludewig, M.: A comparison of frequent pattern techniques and a deep learning method for session-based recommendation. In: RecTemp@ RecSys, pp. 50–56 (2017)

    Google Scholar 

  9. Koh, Y.S., Ravana, S.D.: Unsupervised rare pattern mining: a survey. ACM Trans. Knowl. Discov. Data (TKDD) 10(4), 45 (2016)

    Google Scholar 

  10. Leroy, V., Kirchgessner, M., Termier, A., Amer-Yahia, S.: TopPi: an efficient algorithm for item-centric mining. Inf. Syst. 64, 104–118 (2017)

    Article  Google Scholar 

  11. Lu, Y., Richter, F., Seidl, T.: Efficient infrequent itemset mining using depth-first and top-down lattice traversal. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds.) DASFAA 2018. LNCS, vol. 10827, pp. 908–915. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91452-7_58

    Chapter  Google Scholar 

  12. Lu, Y., Seidl, T.: Towards efficient closed infrequent itemset mining using bi-directional traversing. In: DSAA 2018, pp. 140–149. IEEE (2018)

    Google Scholar 

  13. Mannhardt, F., De Leoni, M., Reijers, H.A., Van Der Aalst, W.M.: Balanced multi-perspective checking of process conformance. Computing 98(4), 407–437 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association rules using closed itemset lattices. Inf. Syst. 24(1), 25–46 (1999)

    Article  MATH  Google Scholar 

  15. Smets, K., Vreeken, J.: Slim: directly mining descriptive patterns. In: Proceedings of SIAM International Conference on Data Mining, pp. 236–247. SIAM (2012)

    Google Scholar 

  16. Szathmary, L., Napoli, A., Valtchev, P.: Towards rare itemset mining. In: 19th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2007, vol. 1, pp. 305–312. IEEE (2007)

    Google Scholar 

  17. Troiano, L., Scibelli, G.: A time-efficient breadth-first level-wise lattice-traversal algorithm to discover rare itemsets. Data Min. Knowl. Disc. 28(3), 773–807 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tsang, S., Koh, Y.S., Dobbie, G.: RP-tree: rare pattern tree mining. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2011. LNCS, vol. 6862, pp. 277–288. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23544-3_21

    Chapter  Google Scholar 

  19. Uno, T., Kiyomi, M., Arimura, H.: LCM ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets. In: Fimi, vol. 126 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifeng Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, Y., Richter, F., Seidl, T. (2019). LSCMiner: Efficient Low Support Closed Itemsets Mining. In: Cheng, R., Mamoulis, N., Sun, Y., Huang, X. (eds) Web Information Systems Engineering – WISE 2019. WISE 2020. Lecture Notes in Computer Science(), vol 11881. Springer, Cham. https://doi.org/10.1007/978-3-030-34223-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34223-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34222-7

  • Online ISBN: 978-3-030-34223-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics