Skip to main content

Handling Disagreement in Ontologies-Based Reasoning via Argumentation

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2019 (WISE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11881))

Included in the following conference series:

Abstract

Ontologies are at the heart of the Semantic Web technologies. This paper introduces a framework for reasoning under uncertainty in the context of ontologies represented in description logics; these ontologies could be inconsistent or incoherent. Conflicts are addressed through a form of logic-based argumentation. We examine how the number of attacks and the weights of arguments can be used to define various labelling functions that identify the justification statuses of arguments. Then, different inference relations are distinguished to obtain meaningful answers to queries from imperfect ontologies without extra computational costs compared to classical DL reasoning. Lastly, we study the properties of these new entailment relations and their relationships with other well-known existing ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.w3.org/TR/owl2-profiles/.

  2. 2.

    In the argumentation literature, several attack relations were proposed (see [24]). Some of them, like the well-known rebutting, are encompassed by the defeater attack relation. We therefore focus on defeater relation.

References

  1. Amgoud, L., Prade, H.: Reaching agreement through argumentation: a possibilistic approach. In: KR, pp. 175–182 (2004)

    Google Scholar 

  2. Arif, M.F., Mencía, C., Ignatiev, A., Manthey, N., Peñaloza, R., Marques-Silva, J.: BEACON: an efficient sat-based tool for debugging EL\(^{\hat{}}\)+ ontologies. In: SAT, pp. 521–530 (2016)

    Google Scholar 

  3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation and Applications (2010)

    Google Scholar 

  4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  5. Baget, J., et al.: A general modifier-based framework for inconsistency-tolerant query answering. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International Conference, KR 2016, pp. 513–516 (2016)

    Google Scholar 

  6. Bail, S., Glimm, B., Jiménez-Ruiz, E., Matentzoglu, N., Parsia, B., Steigmiller, A. (eds.): Informal Proceedings of the 3rd International Workshop on OWL Reasoner Evaluation, CEUR Workshop, vol. 1207 (2014)

    Google Scholar 

  7. Baumann, R.: Characterizing equivalence notions for labelling-based semantics. In: KR, pp. 22–32 (2016)

    Google Scholar 

  8. Benferhat, S., Bouraoui, Z., Croitoru, M., Papini, O., Tabia, K.: Non-objection inference for inconsistency-tolerant query answering. In: IJCAI, pp. 3684–3690 (2016)

    Google Scholar 

  9. Benferhat, S., Bouraoui, Z., Tabia, K.: How to select one preferred assertional-based repair from inconsistent and prioritized DL-Lite knowledge bases? In: IJCAI, pp. 1450–1456 (2015)

    Google Scholar 

  10. Benferhat, S., Dubois, D., Prade, H.: Argumentative inference in uncertain and inconsistent knowledge bases. In: UAI, pp. 411–419 (1993)

    Google Scholar 

  11. Besnard, P., Grégoire, É., Raddaoui, B.: A conditional logic-based argumentation framework. In: SUM, pp. 44–56 (2013)

    Google Scholar 

  12. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artif. Intell. 128(1–2), 203–235 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press, Cambridge (2008)

    Book  Google Scholar 

  14. Bienvenu, M.: On the complexity of consistent query answering in the presence of simple ontologies. In AAAI, AAAI Press (2012)

    Google Scholar 

  15. Bienvenu, M.: Inconsistency-tolerant ontology-based data access revisited: taking mappings into account. In: IJCAI, pp. 1721–1729 (2018). ijcai.org

  16. Bienvenu, M., Bourgaux, C., Goasdoué, F.: Computing and explaining query answers over inconsistent DL-Lite knowledge bases. J. Artif. Intell. Res. 64, 563–644 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bourgaux, C.: Inconsistency Handling in Ontology-Mediated Query Answering. PhD thesis, Université Paris Saclay (2016)

    Google Scholar 

  18. Bouzeghoub, A., Jabbour, S., Ma, Y., Raddaoui, B.: Handling conflicts in uncertain ontologies using deductive argumentation. In: Proceedings of IEEE/WIC 2017, pp. 65–72 (2017

    Google Scholar 

  19. Deagustini, C.A.D., Martinez, M.V., Falappa, M.A., Simari, G.R.: How does incoherence affect inconsistency-tolerant semantics for datalog\(\pm \)? Ann. Math. Artif. Intell. 82(1–3), 43–68 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Handbook of Logic in Artificial Intelligence and Logic Programming, pp. 439–513 (1994)

    Google Scholar 

  21. Dubois, D., Prade, H.: A possibilistic analysis of inconsistency. In: International Conference on Scalable Uncertainty Management, pp. 347–353 (2015)

    Google Scholar 

  22. Flouris, G., Huang, Z., Pan, J.Z., Plexousakis, D., Wache, H.: Inconsistencies, negations and changes in ontologies. In: AAAI, pp. 1295–1300 (2006)

    Google Scholar 

  23. Gómez, S.A., Chesñevar, C.I., Simari, G.R.: ONTOarg: a decision support framework for ontology integration based on argumentation. Expert Syst. Appl. 40(5), 1858–1870 (2013)

    Article  Google Scholar 

  24. Gorogiannis, N., Hunter, A.: Instantiating abstract argumentation with classical logic arguments: postulates and properties. Artif. Intell. 175(9–10), 1479–1497 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Grossi, D., Modgil, S.: On the graded acceptability of arguments. In: IJCAI, pp. 868–874 (2015)

    Google Scholar 

  26. Huang, Z., van Harmelen, F., Ten Teije, A.: Reasoning with inconsistent ontologies. In: IJCAI, pp. 454–459 (2005)

    Google Scholar 

  27. Hunter, A.: Towards higher impact argumentation. In: AAAI, pp. 275–280 (2004)

    Google Scholar 

  28. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL DL entailments. In: ISWC, pp. 267–280 (2007)

    Google Scholar 

  29. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant query answering in ontology-based data access. J. Web Semant. 33, 3–29 (2015)

    Article  Google Scholar 

  30. Liu, B., Li, J., Zhao, Y.: Repairing and reasoning with inconsistent and uncertain ontologies. Adv. Eng. Softw. 45(1), 380–390 (2012)

    Article  Google Scholar 

  31. Ludwig, M.: Just: a tool for computing justifications w.r.t. ELH ontologies. In: OWL/VSL, pp. 1–7 (2014)

    Google Scholar 

  32. Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6–7), 852–883 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lukasiewicz, T., Martinez, M.V., Pieris, A., Simari, G.I.: From classical to consistent query answering under existential rules. In: AAAI, pp. 1546–1552. AAAI Press (2015)

    Google Scholar 

  34. Qi, G., Ji, Q., Pan, J.Z., Du, J.: Extending description logics with uncertainty reasoning in possibilistic logic. Int. J. Intell. Syst. 26(4), 353–381 (2011)

    Article  MATH  Google Scholar 

  35. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Reasoning with probabilistic ontologies. In: IJCAI, pp. 4310–4316 (2015)

    Google Scholar 

  36. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: IJCAI, pp. 355–362 (2003)

    Google Scholar 

  37. Shakarian, P., et al.: Belief revision in structured probabilistic argumentation - model and application to cyber security. Ann. Math. Artif. Intell. 78(3–4), 259–301 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Simari, G.R., Loui, R.P.: A mathematical treatment of defeasible reasoning and its implementation. Artif. Intell. 53(2–3), 125–157 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  39. W3C. OWL 2 Web Ontology Language. http://www.w3.org/TR/owl-overview/

  40. Wan, H., Zhang, H., Xiao, P., Huang, H., Zhang, Y.: Query answering with inconsistent existential rules under stable model semantics. In: AAAI, pp. 1095–1101 (2016

    Google Scholar 

  41. Williams, M., Hunter, A.: Harnessing ontologies for argument-based decision-making in breast cancer. In: ICTAI, pp. 254–261 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badran Raddaoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jabbour, S., Ma, Y., Raddaoui, B. (2019). Handling Disagreement in Ontologies-Based Reasoning via Argumentation. In: Cheng, R., Mamoulis, N., Sun, Y., Huang, X. (eds) Web Information Systems Engineering – WISE 2019. WISE 2020. Lecture Notes in Computer Science(), vol 11881. Springer, Cham. https://doi.org/10.1007/978-3-030-34223-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34223-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34222-7

  • Online ISBN: 978-3-030-34223-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics