Abstract
Ontologies are at the heart of the Semantic Web technologies. This paper introduces a framework for reasoning under uncertainty in the context of ontologies represented in description logics; these ontologies could be inconsistent or incoherent. Conflicts are addressed through a form of logic-based argumentation. We examine how the number of attacks and the weights of arguments can be used to define various labelling functions that identify the justification statuses of arguments. Then, different inference relations are distinguished to obtain meaningful answers to queries from imperfect ontologies without extra computational costs compared to classical DL reasoning. Lastly, we study the properties of these new entailment relations and their relationships with other well-known existing ones.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
In the argumentation literature, several attack relations were proposed (see [24]). Some of them, like the well-known rebutting, are encompassed by the defeater attack relation. We therefore focus on defeater relation.
References
Amgoud, L., Prade, H.: Reaching agreement through argumentation: a possibilistic approach. In: KR, pp. 175–182 (2004)
Arif, M.F., Mencía, C., Ignatiev, A., Manthey, N., Peñaloza, R., Marques-Silva, J.: BEACON: an efficient sat-based tool for debugging EL\(^{\hat{}}\)+ ontologies. In: SAT, pp. 521–530 (2016)
Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation and Applications (2010)
Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press, Cambridge (2010)
Baget, J., et al.: A general modifier-based framework for inconsistency-tolerant query answering. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International Conference, KR 2016, pp. 513–516 (2016)
Bail, S., Glimm, B., Jiménez-Ruiz, E., Matentzoglu, N., Parsia, B., Steigmiller, A. (eds.): Informal Proceedings of the 3rd International Workshop on OWL Reasoner Evaluation, CEUR Workshop, vol. 1207 (2014)
Baumann, R.: Characterizing equivalence notions for labelling-based semantics. In: KR, pp. 22–32 (2016)
Benferhat, S., Bouraoui, Z., Croitoru, M., Papini, O., Tabia, K.: Non-objection inference for inconsistency-tolerant query answering. In: IJCAI, pp. 3684–3690 (2016)
Benferhat, S., Bouraoui, Z., Tabia, K.: How to select one preferred assertional-based repair from inconsistent and prioritized DL-Lite knowledge bases? In: IJCAI, pp. 1450–1456 (2015)
Benferhat, S., Dubois, D., Prade, H.: Argumentative inference in uncertain and inconsistent knowledge bases. In: UAI, pp. 411–419 (1993)
Besnard, P., Grégoire, É., Raddaoui, B.: A conditional logic-based argumentation framework. In: SUM, pp. 44–56 (2013)
Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artif. Intell. 128(1–2), 203–235 (2001)
Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press, Cambridge (2008)
Bienvenu, M.: On the complexity of consistent query answering in the presence of simple ontologies. In AAAI, AAAI Press (2012)
Bienvenu, M.: Inconsistency-tolerant ontology-based data access revisited: taking mappings into account. In: IJCAI, pp. 1721–1729 (2018). ijcai.org
Bienvenu, M., Bourgaux, C., Goasdoué, F.: Computing and explaining query answers over inconsistent DL-Lite knowledge bases. J. Artif. Intell. Res. 64, 563–644 (2019)
Bourgaux, C.: Inconsistency Handling in Ontology-Mediated Query Answering. PhD thesis, Université Paris Saclay (2016)
Bouzeghoub, A., Jabbour, S., Ma, Y., Raddaoui, B.: Handling conflicts in uncertain ontologies using deductive argumentation. In: Proceedings of IEEE/WIC 2017, pp. 65–72 (2017
Deagustini, C.A.D., Martinez, M.V., Falappa, M.A., Simari, G.R.: How does incoherence affect inconsistency-tolerant semantics for datalog\(\pm \)? Ann. Math. Artif. Intell. 82(1–3), 43–68 (2018)
Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Handbook of Logic in Artificial Intelligence and Logic Programming, pp. 439–513 (1994)
Dubois, D., Prade, H.: A possibilistic analysis of inconsistency. In: International Conference on Scalable Uncertainty Management, pp. 347–353 (2015)
Flouris, G., Huang, Z., Pan, J.Z., Plexousakis, D., Wache, H.: Inconsistencies, negations and changes in ontologies. In: AAAI, pp. 1295–1300 (2006)
Gómez, S.A., Chesñevar, C.I., Simari, G.R.: ONTOarg: a decision support framework for ontology integration based on argumentation. Expert Syst. Appl. 40(5), 1858–1870 (2013)
Gorogiannis, N., Hunter, A.: Instantiating abstract argumentation with classical logic arguments: postulates and properties. Artif. Intell. 175(9–10), 1479–1497 (2011)
Grossi, D., Modgil, S.: On the graded acceptability of arguments. In: IJCAI, pp. 868–874 (2015)
Huang, Z., van Harmelen, F., Ten Teije, A.: Reasoning with inconsistent ontologies. In: IJCAI, pp. 454–459 (2005)
Hunter, A.: Towards higher impact argumentation. In: AAAI, pp. 275–280 (2004)
Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL DL entailments. In: ISWC, pp. 267–280 (2007)
Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant query answering in ontology-based data access. J. Web Semant. 33, 3–29 (2015)
Liu, B., Li, J., Zhao, Y.: Repairing and reasoning with inconsistent and uncertain ontologies. Adv. Eng. Softw. 45(1), 380–390 (2012)
Ludwig, M.: Just: a tool for computing justifications w.r.t. ELH ontologies. In: OWL/VSL, pp. 1–7 (2014)
Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6–7), 852–883 (2008)
Lukasiewicz, T., Martinez, M.V., Pieris, A., Simari, G.I.: From classical to consistent query answering under existential rules. In: AAAI, pp. 1546–1552. AAAI Press (2015)
Qi, G., Ji, Q., Pan, J.Z., Du, J.: Extending description logics with uncertainty reasoning in possibilistic logic. Int. J. Intell. Syst. 26(4), 353–381 (2011)
Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Reasoning with probabilistic ontologies. In: IJCAI, pp. 4310–4316 (2015)
Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: IJCAI, pp. 355–362 (2003)
Shakarian, P., et al.: Belief revision in structured probabilistic argumentation - model and application to cyber security. Ann. Math. Artif. Intell. 78(3–4), 259–301 (2016)
Simari, G.R., Loui, R.P.: A mathematical treatment of defeasible reasoning and its implementation. Artif. Intell. 53(2–3), 125–157 (1992)
W3C. OWL 2 Web Ontology Language. http://www.w3.org/TR/owl-overview/
Wan, H., Zhang, H., Xiao, P., Huang, H., Zhang, Y.: Query answering with inconsistent existential rules under stable model semantics. In: AAAI, pp. 1095–1101 (2016
Williams, M., Hunter, A.: Harnessing ontologies for argument-based decision-making in breast cancer. In: ICTAI, pp. 254–261 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Jabbour, S., Ma, Y., Raddaoui, B. (2019). Handling Disagreement in Ontologies-Based Reasoning via Argumentation. In: Cheng, R., Mamoulis, N., Sun, Y., Huang, X. (eds) Web Information Systems Engineering – WISE 2019. WISE 2020. Lecture Notes in Computer Science(), vol 11881. Springer, Cham. https://doi.org/10.1007/978-3-030-34223-4_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-34223-4_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34222-7
Online ISBN: 978-3-030-34223-4
eBook Packages: Computer ScienceComputer Science (R0)