Skip to main content

CoreCube: Core Decomposition in Multilayer Graphs

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2019 (WISE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11881))

Included in the following conference series:

Abstract

Many real-life complex networks are modelled as multilayer graphs where each layer records a certain kind of interaction among entities. Despite the powerful modelling functionality, the decomposition on multilayer graphs remains unclear and inefficient. As a well-studied graph decomposition, core decomposition is efficient on a single layer graph with a variety of applications on social networks, biology, finance and so on. Nevertheless, core decomposition on multilayer graphs is much more challenging due to the various combinations of layers. In this paper, we propose efficient algorithms to compute the CoreCube which records the core decomposition on every combination of layers. We also devise a hybrid storage method that achieves a superior trade-off between the size of CoreCube and the query time. Extensive experiments on 8 real-life datasets demonstrate our algorithms are effective and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abello, J., Resende, M.G.C., Sudarsky, S.: Massive quasi-clique detection. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 598–612. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45995-2_51

    Chapter  Google Scholar 

  2. Altaf-Ul-Amine, M., et al.: Prediction of protein functions based on k-cores of protein-protein interaction networks and amino acid sequences. Gen. Inf. 14, 498–499 (2003)

    Google Scholar 

  3. Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and visualization using the k-core decomposition. In: NIPS, pp. 41–50 (2005)

    Google Scholar 

  4. Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks. CoRR, cs.DS/0310049 (2003)

    Google Scholar 

  5. Bhawalkar, K., Kleinberg, J., Lewi, K., Roughgarden, T., Sharma, A.: Preventing unraveling in social networks: the anchored k-core problem. SIAM J. Discrete Math. 29(3), 1452–1475 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boden, B., Günnemann, S., Hoffmann, H., Seidl, T.: Mining coherent subgraphs in multi-layer graphs with edge labels. In: SIGKDD, pp. 1258–1266 (2012)

    Google Scholar 

  7. Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E.: A model of internet topology using k-shell decomposition. PNAS 104(27), 11150–11154 (2007)

    Article  Google Scholar 

  8. Daianu, M., et al.: Breakdown of brain connectivity between normal aging and Alzheimer’s disease: a structural k-core network analysis. Brain Connectivity 3(4), 407–422 (2013)

    Article  Google Scholar 

  9. Dickison, M.E., Magnani, M., Rossi, L.: Multilayer Social Networks. Cambridge University Press, New York (2016)

    Book  Google Scholar 

  10. Galimberti, E., Bonchi, F., Gullo, F.: Core decomposition and densest subgraph in multilayer networks. In: CIKM, pp. 1807–1816 (2017)

    Google Scholar 

  11. Hu, H., Yan, X., Huang, Y., Han, J., Zhou, X.J.: Mining coherent dense subgraphs across massive biological networks for functional discovery. In: International Conference on Intelligent Systems for Molecular Biology, pp. 213–221 (2005)

    Google Scholar 

  12. Jethava, V., Beerenwinkel, N.: Finding dense subgraphs in relational graphs. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares, C. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9285, pp. 641–654. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23525-7_39

    Chapter  Google Scholar 

  13. Khaouid, W., Barsky, M., Srinivasan, V., Thomo, A.: K-core decomposition of large networks on a single PC. Proc. VLDB Endowment 9(1), 13–23 (2015)

    Article  Google Scholar 

  14. Li, R., Su, J., Qin, L., Yu, J.X., Dai, Q.: Persistent community search in temporal networks. In: ICDE, pp. 797–808 (2018)

    Google Scholar 

  15. Liu, B., Yuan, L., Lin, X., Qin, L., Zhang, W., Zhou, J.: Efficient (\(\alpha \), \(\beta \))-core computation: an index-based approach. In: The World Wide Web Conference, WWW 2019, pp. 1130–1141. ACM, New York (2019)

    Google Scholar 

  16. Luce, R.D.: Connectivity and generalized cliques in sociometric group structure. Psychometrika 15(2), 169–190 (1950)

    Article  MathSciNet  Google Scholar 

  17. Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psychometrika 14(2), 95–116 (1949)

    Article  MathSciNet  Google Scholar 

  18. Malliaros, F.D., Vazirgiannis, M.: To stay or not to stay: modeling engagement dynamics in social graphs. In: CIKM, pp. 469–478 (2013)

    Google Scholar 

  19. Montresor, A., De Pellegrini, F., Miorandi, D.: Distributed k-core decomposition. IEEE Trans. Parallel Distrib. Syst. 24(2), 288–300 (2013)

    Article  Google Scholar 

  20. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  21. Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept. J. Math. Soc. 6(1), 139–154 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/O efficient core graph decomposition at web scale. In: ICDE, pp. 133–144 (2016)

    Google Scholar 

  23. Wu, Y., Jin, R., Zhu, X., Zhang, X.: Finding dense and connected subgraphs in dual networks. In: ICDE, pp. 915–926 (2015)

    Google Scholar 

  24. Zhang, F., Li, C., Zhang, Y., Qin, L., Zhang, W.: Finding critical users in social communities: the collapsed core and truss problems. In: TKDE (2018)

    Google Scholar 

  25. Zhang, F., Yuan, L., Zhang, Y., Qin, L., Lin, X., Zhou, A.: Discovering strong communities with user engagement and tie strength. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds.) DASFAA 2018. LNCS, vol. 10827, pp. 425–441. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91452-7_28

    Chapter  Google Scholar 

  26. Zhang, F., Zhang, W., Zhang, Y., Qin, L., Lin, X.: OLAK: an efficient algorithm to prevent unraveling in social networks. PVLDB 10(6), 649–660 (2017)

    Google Scholar 

  27. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: When engagement meets similarity: Efficient (k, r)-core computation on social networks. PVLDB 10(10), 998–1009 (2017)

    Google Scholar 

  28. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: Efficiently reinforcing social networks over user engagement and tie strength. In: ICDE, pp. 557–568 (2018)

    Google Scholar 

  29. Zhu, R., Zou, Z., Li, J.: Diversified coherent core search on multi-layer graphs. In: ICDE, pp. 701–712 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, B., Zhang, F., Zhang, C., Zhang, W., Lin, X. (2019). CoreCube: Core Decomposition in Multilayer Graphs. In: Cheng, R., Mamoulis, N., Sun, Y., Huang, X. (eds) Web Information Systems Engineering – WISE 2019. WISE 2020. Lecture Notes in Computer Science(), vol 11881. Springer, Cham. https://doi.org/10.1007/978-3-030-34223-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34223-4_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34222-7

  • Online ISBN: 978-3-030-34223-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics