Abstract
Many real-life complex networks are modelled as multilayer graphs where each layer records a certain kind of interaction among entities. Despite the powerful modelling functionality, the decomposition on multilayer graphs remains unclear and inefficient. As a well-studied graph decomposition, core decomposition is efficient on a single layer graph with a variety of applications on social networks, biology, finance and so on. Nevertheless, core decomposition on multilayer graphs is much more challenging due to the various combinations of layers. In this paper, we propose efficient algorithms to compute the CoreCube which records the core decomposition on every combination of layers. We also devise a hybrid storage method that achieves a superior trade-off between the size of CoreCube and the query time. Extensive experiments on 8 real-life datasets demonstrate our algorithms are effective and efficient.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abello, J., Resende, M.G.C., Sudarsky, S.: Massive quasi-clique detection. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 598–612. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45995-2_51
Altaf-Ul-Amine, M., et al.: Prediction of protein functions based on k-cores of protein-protein interaction networks and amino acid sequences. Gen. Inf. 14, 498–499 (2003)
Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and visualization using the k-core decomposition. In: NIPS, pp. 41–50 (2005)
Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks. CoRR, cs.DS/0310049 (2003)
Bhawalkar, K., Kleinberg, J., Lewi, K., Roughgarden, T., Sharma, A.: Preventing unraveling in social networks: the anchored k-core problem. SIAM J. Discrete Math. 29(3), 1452–1475 (2015)
Boden, B., Günnemann, S., Hoffmann, H., Seidl, T.: Mining coherent subgraphs in multi-layer graphs with edge labels. In: SIGKDD, pp. 1258–1266 (2012)
Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E.: A model of internet topology using k-shell decomposition. PNAS 104(27), 11150–11154 (2007)
Daianu, M., et al.: Breakdown of brain connectivity between normal aging and Alzheimer’s disease: a structural k-core network analysis. Brain Connectivity 3(4), 407–422 (2013)
Dickison, M.E., Magnani, M., Rossi, L.: Multilayer Social Networks. Cambridge University Press, New York (2016)
Galimberti, E., Bonchi, F., Gullo, F.: Core decomposition and densest subgraph in multilayer networks. In: CIKM, pp. 1807–1816 (2017)
Hu, H., Yan, X., Huang, Y., Han, J., Zhou, X.J.: Mining coherent dense subgraphs across massive biological networks for functional discovery. In: International Conference on Intelligent Systems for Molecular Biology, pp. 213–221 (2005)
Jethava, V., Beerenwinkel, N.: Finding dense subgraphs in relational graphs. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares, C. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9285, pp. 641–654. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23525-7_39
Khaouid, W., Barsky, M., Srinivasan, V., Thomo, A.: K-core decomposition of large networks on a single PC. Proc. VLDB Endowment 9(1), 13–23 (2015)
Li, R., Su, J., Qin, L., Yu, J.X., Dai, Q.: Persistent community search in temporal networks. In: ICDE, pp. 797–808 (2018)
Liu, B., Yuan, L., Lin, X., Qin, L., Zhang, W., Zhou, J.: Efficient (\(\alpha \), \(\beta \))-core computation: an index-based approach. In: The World Wide Web Conference, WWW 2019, pp. 1130–1141. ACM, New York (2019)
Luce, R.D.: Connectivity and generalized cliques in sociometric group structure. Psychometrika 15(2), 169–190 (1950)
Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psychometrika 14(2), 95–116 (1949)
Malliaros, F.D., Vazirgiannis, M.: To stay or not to stay: modeling engagement dynamics in social graphs. In: CIKM, pp. 469–478 (2013)
Montresor, A., De Pellegrini, F., Miorandi, D.: Distributed k-core decomposition. IEEE Trans. Parallel Distrib. Syst. 24(2), 288–300 (2013)
Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287 (1983)
Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept. J. Math. Soc. 6(1), 139–154 (1978)
Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/O efficient core graph decomposition at web scale. In: ICDE, pp. 133–144 (2016)
Wu, Y., Jin, R., Zhu, X., Zhang, X.: Finding dense and connected subgraphs in dual networks. In: ICDE, pp. 915–926 (2015)
Zhang, F., Li, C., Zhang, Y., Qin, L., Zhang, W.: Finding critical users in social communities: the collapsed core and truss problems. In: TKDE (2018)
Zhang, F., Yuan, L., Zhang, Y., Qin, L., Lin, X., Zhou, A.: Discovering strong communities with user engagement and tie strength. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds.) DASFAA 2018. LNCS, vol. 10827, pp. 425–441. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91452-7_28
Zhang, F., Zhang, W., Zhang, Y., Qin, L., Lin, X.: OLAK: an efficient algorithm to prevent unraveling in social networks. PVLDB 10(6), 649–660 (2017)
Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: When engagement meets similarity: Efficient (k, r)-core computation on social networks. PVLDB 10(10), 998–1009 (2017)
Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: Efficiently reinforcing social networks over user engagement and tie strength. In: ICDE, pp. 557–568 (2018)
Zhu, R., Zou, Z., Li, J.: Diversified coherent core search on multi-layer graphs. In: ICDE, pp. 701–712 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, B., Zhang, F., Zhang, C., Zhang, W., Lin, X. (2019). CoreCube: Core Decomposition in Multilayer Graphs. In: Cheng, R., Mamoulis, N., Sun, Y., Huang, X. (eds) Web Information Systems Engineering – WISE 2019. WISE 2020. Lecture Notes in Computer Science(), vol 11881. Springer, Cham. https://doi.org/10.1007/978-3-030-34223-4_44
Download citation
DOI: https://doi.org/10.1007/978-3-030-34223-4_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34222-7
Online ISBN: 978-3-030-34223-4
eBook Packages: Computer ScienceComputer Science (R0)