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Abstract. Many real-life complex networks are modelled as multilayer
graphs where each layer records a certain kind of interaction among
entities. Despite the powerful modelling functionality, the decomposition
on multilayer graphs remains unclear and inefficient. As a well-studied
graph decomposition, core decomposition is efficient on a single layer
graph with a variety of applications on social networks, biology, finance
and so on. Nevertheless, core decomposition on multilayer graphs is much
more challenging due to the various combinations of layers. In this paper,
we propose efficient algorithms to compute the CoreCube which records
the core decomposition on every combination of layers. We also devise
a hybrid storage method that achieves a superior trade-off between the
size of CoreCube and the query time. Extensive experiments on 8 real-life
datasets demonstrate our algorithms are effective and efficient.
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1 Introduction

In real-life networks, there are usually multiple types of interactions (edges)
among entities (vertices), e.g., the relationship between two users in a social
network can be friends, colleagues, relatives and so on. The entities and inter-
actions are usually modelled as a multilayer graph, where each layer records
a certain type of interaction among entities [9]. Because of the strong mod-
eling paradigm to handle various interactions among a set of entities, there
are significant existing studies of multilayer graphs, e.g., [6,14]. Previous works
usually focus on mining dense structures from multilayer graphs according to
given parameters, e.g., [29]. Nevertheless, graph decomposition, as a fundamen-
tal graph problem [22], remains largely unexplored on multilayer graphs.

Core decomposition (or k-core decomposition), as one of the most well-
studied graph decomposition, is to compute the core number for every vertex
in the graph [20]. It is a powerful tool in modeling the dynamic of user engage-
ment in social networks. In practice, a user u tends to adopt a new behavior
if there are a considerable number of friends (e.g., the core number of u) in
the group who also adopted the same behavior [18]. Core decomposition is also
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Fig. 1. Multilayer core decomposition and CoreCube of a graph

theoretically supported by Nash equilibrium in game theory [5]. It has a vari-
ety of applications, e.g., graph visualization [3], internet topology [7] and user
engagement [24,26]. Extending the single-layer core decomposition to multilayer
graphs is a critical task which can benefit a lot of applications considering the
various real-world interactions between entities.

Given a multilayer graph, the multilayer k-core on a set of layers is defined
as a set of vertices whose minimum degree in the induced subgraph of each layer
is at least k. The core number of a vertex on a set of layers is the largest k such
that the multilayer k-core on these layers contains the vertex. Multilayer core
decomposition on a set of layers is to compute the core number for each vertex
on these layers. In this paper, we propose CoreCube which records the core
numbers of each vertex for every combination of layers in a multilayer graph. In
the following, we show the details for some application examples.

User Engagement Evaluation. In social networks, users may participate in multi-
ple groups with different themes, where each group forms a layer in the multilayer
graph. For instance, the authors in a coauthor network have different coauthor
relationship on different venues (conferences or journals). For any given user-
interested combination of venues (correspond to layers), CoreCube of the coau-
thor network can immediately answer the engagement level for each author, i,e,
the core numbers [18]. Given a degree constraint k, we can also immediately
retrieve a cohesive user group from CoreCube, i.e., the multilayer k-core.

Biological Module Analysis. In biological networks, different interactions
between the modules are detected with different methods due to data noise
and technical limitations [11]. Analyzing module structure according to single
method, i.e., on a single layer, may not be accurate. CoreCube allows us to study
the connections between modules for any combination of potential methods.
Thus, we can find co-expression clusters and verify the effectiveness of detection
methods.

Figure 1 shows an example of CoreCube on a graph G with three layers and
depicts the multilayer core decomposition on layer a and b. The 3-core on layer
a and b contains 5 vertices where each vertex has a degree of at least 3 in
each layer. There are 7 different combinations of layers in CoreCube of G. For
each combination, we compute its multilayer core decomposition and record the
core numbers in CoreCube. CoreCube can immediately answer a query for core
numbers on any set of layers including the traditional single layer graph.
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Table 1. Summary of notations

Notation Definition

G = (V, E, L) A multilayer graph, where V is a set of vertices, L is a set of layers,
and E ⊆ (V × V × L) is a set of edges

V (G) The vertex set of G

L′; l L′ ⊆ L is a subset of L; l ∈ L is a layer in L

EL′ The edge set in L′, i.e., EL′ = E ∩ (V × V × L′)

u, v A vertex in the graph

|V |, |E|, |L| The number of vertices, edges, and layers in G, respectively

NG(v, l) The set of adjacent vertices of v in layer l of G

degG(v, l) The number of adjacent vertices of v in layer l of G

dmax The maximum degree, i.e., dmax = max{degG(v, l) | v ∈ V ∧ l ∈ L}
Ck

L′ The multilayer k-core on a set of layers L′

CL′(v) The core number of v on a set of layers L′

CL′ The multilayer core decomposition result on a set of layers L′

C The CoreCube of G, i.e., C = {CL′ | L′ ⊆ L}

Challenges and Contributions. Although core decomposition on a single-
layer graph can be computed in linear time, it becomes very challenging on a
multilayer graph because the combination number of layers is exponential to the
number of layers. In the general case, no polynomial-time algorithm may exist
for computing the CoreCube. To the best of our knowledge, there is only one
similar work [10] where the algorithms can be adapted to compute the CoreCube
while it is hard to share the computation among different combination of layers.
The algorithms proposed in this paper can largely speed up the computation of
CoreCube. We summarize our contributions as follows:

– We propose efficient algorithms to compute the CoreCube. Several theorems
reveal the inner characteristics of multilayer core decomposition. (Sect. 3)

– We devise a hybrid storage method which has a superior trade-off between
query processing time and storage size. (Sect. 4)

– Extensive experiments demonstrate that our CoreCube computation and
query processing are faster than baselines by more than one order of magni-
tude. (Sect. 5)

2 Problem Definition

In this section, we give some notations and formally define CoreCube. The nota-
tions are summarized in Table 1.

We consider an unweighted and undirected multilayer graph G = (V,E,L),
where V represents the set of vertices in G, L represents the set of layers, and
E ⊆ (V ×V ×L) represents the set of edges. We use |V |, |E|, and |L| to denote the



CoreCube: Core Decomposition in Multilayer Graphs 697

number of vertices, edges, and layers, respectively. NG(v, l) is the set of adjacent
vertices of v in layer l. We say a vertex u is incident to an edge, or an edge is
incident to u, if u is one of the endpoints of the edge. We use degG(v, l) to denote
the number of adjacent vertices of u in layer l. When the context is clear, we
omit the input graph in notations, such as deg(v, l) for degG(v, l).

Definition 1. Multilayer k-core. Given a multilayer graph G = (V,E,L), a
set of layers L′ ⊆ L and an integer k, the multilayer k-core of G on L′, denoted
by Ck

L′ , is the maximum vertex set such that every vertex v in the subgraph H
induced by Ck

L′ satisfies degH(v, l) ≥ k on each l ∈ L′.

Let kmax be the maximum possible k such that a multilayer k-core of G on
L′ exists. The multilayer k-core for all 1 ≤ k < kmax has the following partial
containment property:

Property 1. Given a multilayer graph G = (V,E,L) and a set of layers L′,
Ck+1

L′ ⊆ Ck
L′ for all 1 ≤ k < kmax.

Next, we define the core number for each v ∈ V .

Definition 2. Core Number. Given a multilayer graph G = (V,E,L) and a
set of layers L′ ⊆ L, the core number of v on L′, denoted by CL′(v), is the largest
k such that v is contained in multilayer k-core on L′, i.e., CL′(v) = max{k | v ∈
Ck

L′}.
Based on Property 1 and Definition 2, we can easily derive following lemma:

Lemma 1. Given a multilayer graph G = (V,E,L), a set of layers L′, and an
integer k, we have Ck

L′ = {v ∈ V | CL′(v) ≥ k}.
Definition 3. Multilayer Core Decomposition. Given a multilayer graph
G = (V,E,L) and a set of layers L′ ⊆ L, the multilayer core decomposition,
denoted by CL′ , computes Ck

L′ for all 1 ≤ k ≤ kmax.

According to Lemma 1, multilayer core decomposition on L′ is equivalent to
computing the core number CL′(v) for each v ∈ V . Finally, we give the formal
definition of CoreCube and the problem we tackle in this paper.

Definition 4. CoreCube. Given a multilayer graph G = (V,E,L), the Core-
Cube of G, denoted as C, computes multilayer core decomposition on all the
subsets of L, i.e., C = {CL′ | L′ ⊆ L}.
Problem Statement. In this paper, we study the problem of efficiently com-
puting and compactly storing CoreCube of multilayer graphs.

3 CoreCube Computation

In this section, we present our basic CoreCube computation algorithm and then
discuss how to improve the algorithm by sharing computation among multilayer
core decomposition on different sets of layers.
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3.1 Basic CoreCube Algorithm

Based on Property 1, given a multilayer graph G = (V,E,L) and a set of layers
L′ ⊆ L, the multilayer core decomposition on L′ can be computed in a bottom up
manner following the paradigm used for single layer graphs [4], which increases
k step by step and iteratively removing vertices whose degree are less than k. We
give this algorithm Core-BU in Algorithm 1. Core-BU computes multilayer core
decomposition in increasing order of k. Each time, k is selected as the minimum
degree (line 3). Whenever there exists a vertex v whose degree is no larger than
k in some layer l ∈ L′ (line 4), we know that the core number of v is k (line 5)
and we remove v with all its incident edges from the graph (line 6). The core
numbers are returned in line 7. With the help of bin sort and the efficient data
structure proposed in [13] to maintain the minimum degree, Core-BU can achieve
a time complexity of O(|EL′ | + |V |).

The algorithm CoreCube-BU which computes CoreCube with Core-BU is
shown in Algorithm 2. In Algorithm 2, CoreCube is computed level-by-level.
Each time, we generate all the subsets of L with the same size z (line 3) and
compute multilayer core decomposition on each subset (line 4–5). CoreCube is
returned in line 6.

Algorithm 1: Core-BU(G, L′)
Input : G = (V, E, L) : a multilayer graph, L′ : a subset of L
Output : CL′ : the multilayer core decomposition on L′

G′ ← GL′ ;1

while G′ �= ∅ do2

k ← min{degG′(v, l) | v ∈ V (G′) ∧ l ∈ L′};3

while ∃v ∈ V (G′) and l ∈ L′ : degG′(v, l) ≤ k do4

CL′(v) ← k;5

remove v and its incident edges from G′;6

return CL′7

Algorithm 2: CoreCube-BU(G)
Input : G : a multilayer graph
Output : C : the CoreCube of G
C ← ∅;1

for z = 1 to |L| do2

Z ← {all the subsets of L whose size are z};3

for each L′ ∈ Z do4

C ← C ∪ {Core-BU(G, L′)};5

return C6

Complexity. Since there are 2|L| − 1 (expect ∅) subsets of L need to be pro-
cessed and Core-BU runs in O(|EL′ | + |V |) for any subset L′, the complexity of
CoreCube-BU is O(2|L| · (|E| + |V |)).
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3.2 Computation-Sharing CoreCube Algorithm

Core-BU needs to remove all the edges in EL′ when computing multilayer core
decomposition on L′. This is because the core number of a vertex v is obtained
only when v is removed. Therefore, CoreCube-BU computes each multilayer core
decomposition independently. To improve the efficiency of CoreCube computa-
tion, we aim at devising an algorithm that shares computation among multilayer
core decomposition on different sets of layers. We first extend the locality prop-
erty of k-core in single layer graphs [19] to multilayer graphs.

Theorem 1. Given a multilayer graph G = (V,E,L) and a set of layers L′ ⊆ L,
we have the following recursive equations for core number CL′(v) of a vertex
v ∈ V :

∀l ∈ L′ Ml(v) = max k s.t. |{u ∈ N(v, l) | CL′(u) ≥ k}| ≥ k (1)

CL′(v) = min{Ml(v) | l ∈ L′} (2)

where N(v, l) is the set of adjacent vertices of v in layer l.

Proof. (i) Let kc = min{Ml(v) | l ∈ L′} and S be the multilayer kc-core on L′.
Firstly, S must be nonempty as there exists some vertex u satisfying CL′(u) ≥ kc.
According to Eqs. 1 and 2, we have ∀l ∈ L′, |{u ∈ N(v, l) | CL′(u) ≥ kc}| ≥ kc.
Therefore, in each layer l ∈ L′, v has at least kc adjacent vertices in S, which
means v ∈ S. Hence, CL′(v) ≥ kc. (ii) On the other hand, according to Eqs. 1 and
2, there must exist some l0 ∈ L′ in which |{u ∈ N(v, l0)|CL′(u) ≥ kc+1}| < kc+1.
Therefore, CL′(v) < kc + 1. Combining the conclusion in (i) and (ii) together, it
holds that CL′(v) = min{Ml(v) | l ∈ L′}.

Following Theorem 1, we devise the algorithm Core-TD which computes mul-
tilayer core decomposition on L′ in a top down manner. Core-TD iteratively
reduces the upper bound of core number for each vertex. Initially, each vertex v
is assigned an arbitrary upper bound of core number (e.g. the minimum degree
of v in L′). Then Core-TD keeps updating the upper bound using Eqs. 1 and 2
until convergence. The pseudocode of Core-TD is given in Algorithm 3. Here, we
use CL′(v) to denote the upper bound of CL′(v). We also use sup(v, l) (support
of v) to denote the number of adjacent vertices of v in layer l whose upper bound
is no less than CL′(v). That is

sup(v, l) = |{u ∈ N(v, l) | CL′(u) ≥ CL′(v)}| (3)

Note that if sup(v, l) < CL′(v), Eq. 1 does not hold for v in layer l. Therefore, we
can determine whether CL′(v) needs to be updated by comparing CL′(v) with
sup(v, l) for each l ∈ L′ instead of scanning all the adjacent vertices of v.
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Core-TD first initializes sup(v, l) for every vertex based on Eq. 3 in line 1.
Then it updates vertex v whose upper bound violates Eq. 1 in some layer r
(line 2). c0 records the value of CL′(v) before being updated (line 3). Core-TD
updates CL′(v) according to Eqs. 1 and 2 (line 4–7). Then, for each layer l ∈ L′,
it recomputes sup(v, l) and updates sup(u, l) for each adjacent vertex u of v
(line 8–12). sup(u, l) is decreased by 1 if v once contributed to sup(u, l) but not
anymore after CL′(v) being updated (line 11–12). Finally, after all the upper
bound converges, Core-TD sets CL′(v) as CL′(v) for each vertex v ∈ V in line 13
and returns CL′ in line 14.

Complexity. In Core-TD, each time when the upper bound of some vertex
v is updated, line 2–12 takes O(

∑
l∈L′(deg(v, l))). Since CL′(v) is at least

decreased by 1 whenever being updated, the time complexity of Core-TD is
O(

∑
v∈V (CL′(v) · ∑

l∈L′ deg(v, l))), which is bounded by O(dmax · |EL′ |) as the
maximum degree dmax can always serve as an upper bound for any vertex.

Algorithm 3: Core-TD(G, L′, CL′)

Input : G = (V, E, L) : a multilayer graph, L′ : a subset of L, CL′ : upper
bound of core number on L′ for each vertex in V

Output : CL′ : the multilayer core decomposition
sup(v, l) ← |{u ∈ N(v, l) | CL′(u) ≥ CL′(v)}| for each v ∈ V and l ∈ L′;1

while ∃v ∈ V ′ and r ∈ L′: sup(v, r) < CL′(v) do2

c0 ← CL′(v);3

for each l ∈ L′ do4

Ml(v) = max k s.t. |{u ∈ N(v, l) | CL′(u) ≥ k}| ≥ k;5

if CL′(v) > Ml(v) then6

CL′(v) ← Ml(v);7

for each l ∈ L′ do8

sup(v, l) ← |{u ∈ N(v, l) | CL′(u) ≥ CL′(v)}|;9

for each u ∈ N(v, l) do10

if CL′(u) ≤ c0 and CL′(u) > CL′(v) then11

sup(u, l) ← sup(u, l) − 1;12

CL′(v) ← CL′(v) for every v ∈ V ;13

return CL′14

Correctness. The correctness of Core-TD is based on Theorem 1. When
Core-TD terminates, Eqs. 1 and 2 are satisfied for each vertex. On the other
hand, the value computed for each vertex cannot be smaller than the core num-
ber because it is always an upper bound of the core number. Hence, Core-TD
correctly computes core number for each vertex.

The key issue with Core-TD is how to initialize the upper bound tight enough
such that it can quickly converge. To deal with this issue, we introduce the
following lemma:
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Algorithm 4: CoreCube-TD(G)
Input : G : a multilayer graph
Output : C : the CoreCube of G
C ← ∅;1

for z = 1 to |L| do2

Z ← {all the subsets of |L| whose size are z};3

for each L′ ∈ Z do4

for each v ∈ V do5

if z = 1 then6

CL′(v) ← deg(v, l) where l ∈ L′;7

else8

CL′(v) ← min{CD(v) | D ⊂ L′ ∧ |D| = |L′| + 1};9

C ← C ∪ {Core-TD (G, L′, CL′)};10

return C11

Lemma 2. Given a multilayer graph G = (V,E,L) and a vertex v ∈ V , it holds
that CL1(v) ≥ CL2(v) if L1 ⊆ L2.

Proof. Let k = CL2(v). Based on the definition of core number, there exists a
set of vertices S ⊆ V such that each vertex v in the subgraph H induced by S
satisfies degH(v, l) ≥ k for l ∈ L2. Since L1 ⊆ L2, we have CL1(v) ≥ k = CL2(v).

According to Lemma 2, the core number of a vertex v on L′ can serve as
an upper bound of v’s core number on any superset of L′. Note that if we
compute CoreCube level-by-level, we will obtain core numbers on all the subsets
of L′ when computing multilayer core decomposition on L′. Therefore we can
exploit previous computation as much as possible by initializing CL′(v) with the
minimum core number of v on all the subsets of L′, i.e., CL(v) = min{CP (v) |P ⊂
L′}. Furthermore, based on Lemma 2, we actually only need to consider the
subsets whose size is only one smaller than |L′| because any the subset of L′

whose size is smaller than |L′|−1 must be contained in some subset of L′ whose
size is |L′| − 1.

The algorithm CoreCube-TD which computes CoreCube with Core-TD is
shown in Algorithm 4. Each time before it invokes Core-TD for a set of lay-
ers L′, it sets the upper bound of core number for each vertex according to
Lemma 2 (line 9). If |L′| is 1, it sets the upper bound as the vertex degree (line
7). Finally, the CoreCube of G is returned in line 11.

Complexity. In CoreCube-TD, since the number of subsets D processed in line
9 is |L′|, line 5–9 takes O(|L′| · |V |). Considering that there are 2|L| −1 subsets of
L and Core-TD is invoked for each subset, the time complexity of CoreCube-TD
is bounded by O(2|L| · (|L| · |V | + dmax · |E|)). Though the time complexity is
apparently worse than that of CoreCube-BU, we find that much less vertices
are visited in our experiments, especially when the number of layers is large.
This is because the upper bound is initialized very close to the core number and
converges quickly in Core-TD.
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4 CoreCube Storage

In this section, we devise a method for compactly storing CoreCube and discuss
how to process queries for core numbers on any set of layers. A straightforward
method is storing core numbers on each set of layers in separate files. Given a
core number query, we can directly retrieve the result from the disk. However,
this method requires large disk space as we need to store each vertex in every
file. To reduce space usage, we propose two optimization strategies.

Firstly, many vertices’ core number on a set of layers L′ can be zero when |L′|
is large because the core number of a vertex v is zero if deg(v, l) in some layer
l ∈ L′ equals to 0. Therefore, we do not record the vertex whose core number is
zero. Secondly, the core number on L′ can remain unchanged when a new layer
l is added to L′ if the core number on L′ is small or the distribution of core
number on l is nearly the same as that in L′. Hence, we can store the difference
between core numbers on different sets of layers instead of directly storing core
number for each vertex. Here, we call the file that stores nonzero core numbers
as absolute storage and the file that stores the difference as relative storage.
The algorithm Hybrid-Storage which uses both absolute storage and relative
storage is given in Algorithm 5.

Hybrid-Storage creates a file F for each subset of L (line 3). For the subset
consists of single layer, it uses absolute storage to store the nonzero core number
for each vertex (line 4–6). For other subsets L′, it first counts the number of

Algorithm 5: Hybrid-Storage(G, C)
Input : G = (V, E, L): a multilayer graph, C: the CoreCube of G
Output : the files that stores C
Z ← {all the subsets of |L|};1

for each L′ ∈ Z do2

create a new file F ;3

if |L′| = 1 then4

for each v ∈ V and CL′(v) �= 0 do5

write v and CL′(v) into F ;6

else7

n1 ← the number of non zero values in CL′ ;8

P ← the subset of L′ s.t. |{v ∈ V | CP (v) �= CL′(v)}| is minimum9

∧|P | = |L′| − 1 ;
n2 ← |{v ∈ V | CP (v) �= CL′(v)}|;10

if n1 ≤ n2 then11

for each v ∈ V and CL′(v) �= 0 do12

write v and CL′(v) into F ;13

else14

write P as the predecessor into F ;15

for each v ∈ V and CP (v) − CL′(v) �= 0 do16

write v and CP (v) − CL′(v) into F ;17
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Algorithm 6: Core-Retrieve(G, L′)
Input : G = (V, E, L): a multilayer graph, L′: a subset of layers
Output : CL′ : the multilayer core number on L′

CL′(v) ← 0 for each v ∈ V ;1

flag ← true; P ← L′;2

while flag do3

load the file F corresponding to P from disk;4

if F is relative storage then5

P ← the predecessor in F ;6

else7

flag ← false;8

CL′(v) ← CL′(v) + F (v) for each v ∈ V ;9

return CL′10

nonzero core number in CL′ as n1 (line 8). Then, it finds the subset P of L′ such
that the number of different values between CL′ and CP is minimum (line 9) and
refers this number as n2 (line 10). If n1 ≤ n2, Hybrid-Storage uses absolute
storage (line 11–13). Otherwise, it uses relative storage that stores all the dif-
ference between CL′ and CP (line 16–17). It also records P as the predecessor
(line 15) so that we can know from which subset the difference is made when
answering queries.

The algorithm which processes queries for core numbers on a set of layers L′ is
shown in Algorithm 6. Core-Retrieve keeps loading files from disk according to
the predecessors (line 4–6) until it meets absolute storage (line 7–8). Meanwhile,
Core-Retrieve computes core numbers by summing up the difference stored in
each file (line 9). Note that we use F (v) to represent the value (core number
or difference) associated with node v stored in file F . Finally, core numbers are
returned in line 10. Note that Core-Retrieve loads at most |L′| files.

Table 2. Statistics of datasets

Dataset Vertices Edges Layers Domain

Homo 18, 223 153, 922 7 Genetic

SacchCere 6, 571 247, 152 7 Genetic

Twitter 2, 281, 260 3, 827, 964 3 Social

Amazon 410, 237 8, 132, 506 4 Co-purchasing

DBLP 2, 175, 466 8, 221, 193 10 Co-authorship

Flickr 2, 302, 927 23, 350, 524 10 Social

StackOverflow 6, 024, 272 28, 978, 914 10 Social

Wiki 25, 323, 885 132, 693, 853 10 Hyperlinks
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5 Experimental Evaluation

5.1 Experimental Setting

Datasets. Eight real-life networks were deployed in our experiments. Table 2
shows the statistics of the 8 datasets, listed in increasing order of their edge
numbers. Home and SacchCere are networks describing different types of genetic
interactions between genes. Twitter represents different types of social inter-
action among Twitter users. Amazon is a co-purchasing temporal network, con-
taining four snapshots between March and June 2003. DBLP is a co-author net-
work. Flickr is a social network represents Flickr users and their friendship
connections. StackOverflow is a temporal network represents different types of
interactions on the website Stack Overflow. Wiki contains users and pages from
Wikipedia, connected by edit events.

Algorithms. We test 4 algorithms for CoreCube computation. CoreCube-BU
and CoreCube-TD are our algorithms, e.g., Algorithms 2 and 4.

ML-DFS and ML-Hybrid are two state-of-the-art existing solutions proposed
in [10]. They compute cores for all the coreness vector k, where k is a |L|-
dimension vector and the value k in each dimension represents that the degree
of each vertex is no less than k in the corresponding layer. ML-DFS searches the
space of k through depth-first search strategy. ML-Hybrid adopts both depth-
first and breath-first search strategy. In our experiments, we compute CoreCube
by using cores whose k has the same value in every nonzero dimension. For the
sake of fairness, we extract and report the time spent on computing these cores
in ML-DFS and ML-Hybrid instead of the total running time.

To the best of our knowledge, no existing work investigates the storage of
CoreCube. We test three algorithms Naive-Storage, Nonzero-Storage and
Hybrid-Storage. Naive-Storage stores core numbers without any optimization
strategies. Nonzero-Storage only stores nonzero core numbers. Hybrid-Storage
uses both absolute storage and relative storage, i.e., Algorithm 5.

Core-Retrieve is our algorithm for answering core number queries, i.e.,
Algorithm 6. CoreScratch computes core numbers from scratch for each
query. We divide CoreScratch into two procedures, CoreScratch-Load and
CoreScratch-Comp. CoreScratch-Load is the procedure that loads the graph
from disk into main memory. CoreScratch-Comp is the procedure that computes
core numbers. For CoreScratch-Comp, we test both Core-BU and Core-TD, and
report the running time based on the faster one.

All algorithms are implemented in C++ with -O2 optimization level and
tested on an server equipped with Intel Xeon CPU at 2.8 GHz and 128 GB main
memory.

5.2 CoreCube Computation

In this set of experiments, we set the maximum running time for each test as
48 h. If an algorithm cannot stop within the time limit, we omit its running time.

Exp-1: CoreCube Computation Time on Different Datasets. We report
the time cost for computing CoreCube on different datasets in Fig. 2. As shown
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Fig. 3. The number of visited vertices in CoreCube computation in all datasets

in Fig. 2, our proposed algorithm CoreCube-TD is the fastest algorithm in all
datasets except Amazon and achieves one order of magnitude improvement on
average compared with existing solutions ML-DFS and ML-Hybrid. For example,
in DBLP, CoreCube-BU and CoreCube-TD spend 662s and 375s respectively while
ML-DFS and ML-Hybrid spend 4487 s and 3932 s respectively. In the three largest
datasets, ML-DFS and ML-Hybrid cannot terminate within 48 h.

Exp-2: The Number of Visited Vertices in CoreCube Computation. To
better demonstrate performance of the four CoreCube computation algorithms,
we report the number of visited vertices in Fig. 3. The number of visited ver-
tices represents how many times the value related to a vertex is modified or
accessed, e.g., removing an edge or decreasing upper bound. For ML-DFS and
ML-Hybrid, the number of visited vertices is collected during the computation
of cores that are used for computing CoreCube. As shown in Fig. 3, the number
of visited vertices in CoreCube-TD is smallest in all datasets except for Amazon.
This is because the core numbers in Amazon vary a lot on different sets of layers,
which leads to slow convergence in Core-TD. Compared with our algorithms,
the number of visited vertices in ML-DFS and ML-Hybrid is much larger. The
reason is that they need to generate a subgraph that contains some core before
computing it.

Exp-3: Scalability of CoreCube Computation. In this experiment, we eval-
uate the performance of four CoreCube computation algorithms with varying the
number of layers. We show results on DBLP and Flickr in Fig. 4. The trends are
similar in other datasets. As shown in Fig. 4, the running time of four algorithms
stably increases. The gap between existing algorithms and our proposed algo-
rithms becomes larger as the number of layers increases. Compared with exist-
ing algorithms, our proposed algorithm CoreCube-TD achieves at least 1 order of
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magnitude improvement when the number of layers excesses 7. Furthermore, the
gap between CoreCube-BU and CoreCube-TD becomes larger with the increasing
of layers, which shows that the advantages of CoreCube-TD is significant when
the number of layers becomes large.

Fig. 4. CoreCube computation time with varying number of layers

5.3 CoreCube Storage and Query Processing

Exp-4: Disk Usage under Different Storage Methods. In this experi-
ment, we report the disk usage of storing CoreCube of all datasets in Fig. 5. As
shown in Fig. 5, the disk usage of Hybrid-Storage is smallest in all datasets.
For example, in DBLP, the disk usage of Naive-Storage, Nonzero-Storage and
Hybrid-Storage are 21GB, 522MB and 302MB respectively. The gap between
Naive-Storage and Nonzero-Storage shows that many vertices have zero core
number in CoreCube. Hybrid-Storage further reduces disk usage by storing the
difference between core numbers on different subsets of layers.

Exp-5: Core Number Query Processing Time. In this experiment, we
randomly generate 100 core number queries for each dataset. Each core num-
ber query asks for core numbers on a specific set of layers. The total running
time of answering the 100 queries is reported in Fig. 6. As shown in Fig. 6,
Core-Retrieve finishes 100 queries within 10 ms in all datasets including the
time spent on loading files from disk. CoreScratch spends more than 100 s in
the largest dataset even if the graph has already been loaded into memory.
In real scenarios, graphs cannot always be kept in memory. The advantage of
Core-Retrieve is more significant when considering the graph loading time in
CoreScratch-Load.

5.4 Case Study on DBLP

In this section, we test the effectiveness of multilayer core decomposition on
DBLP. Here, the multilayer graph has two layers. One layer is the coauthor
network of SIGMOD conference. Another one is the coauthor network of KDD
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conference. Two authors are connected if they collaborated on at least one paper.
Both layers are extracted from data from 2013 to 2017.

Exp-6: Case Study on DBLP. We show vertices with core number no less
than 3 in Fig. 7. Edges that appear exclusively in KDD and SIGMOD are col-
ored with blue and red respectively. Edges that appear in both layers are colored
with black. As shown in Fig. 7, multilayer core decomposition effectively captures
authors with different engagement level in both conferences. Note that the sub-
graph induced by multilayer k-core are not necessarily connected.

6 Related Work

Cohesive Subgraphs. A variety of cohesive subgraph models are proposed to
handle different scenarios. One of the earliest model is clique [17] where every
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vertex is adjacent to every other vertex in the subgraph. The over-restrictive
definition of clique leads to many relaxed models, e.g., n-clique [16], k-plex [21],
and quasi-clique [1]. Cohesive subgraph models have a lot of applications on
different disciplines, such as social networks [18,25,28], protein networks [2] and
brain science [8]. The model of k-core [20] is well-studied on single-layer graphs
for its elegant definitions and linear-time solution. Given a graph, the k-core of
every input k naturally forms a hierarchical graph decomposition. Core decom-
position is applied to many areas of importance, e.g., graph visualization [3],
internet topology [7] and so on. A linear-time algorithm for k-core decompo-
sition on single layer graph is proposed in [4]. Liu et al. [15] also studies core
decomposition in bipartite graphs.

Multilayer Graphs. As a powerful paradigm to model complex networks,
multilayer graphs received a lot of interests in the literature [9]. Most existing
works focus on mining dense structures on multilayer networks. Zhang et al. [27]
detect cohesive subgraphs on a 2-layer graph where one layer corresponds to user
engagement and the other corresponds to user similarity. Wu et al. [23] find sub-
graphs where each subgraph is dense on one layer and connected on the other
layer. Jethava and Beerenwinkel [12] study the densest common subgraph prob-
lem to find a subgraph maximizing the minimum average degree on all the layers
of a graph. They propose a greedy algorithm without approximation guarantees.
Zhu et al. [29] search diversified coherent k-cores with top sizes on multilayer
graphs. Li et al. [14] find persistent k-cores on a temporal graph where each layer
corresponds to a time span. Galimberti et al. [10] study core decomposition and
densest subgraph extraction on multilayer graphs.

7 Conclusion

In this paper, we study core decomposition on multilayer graphs and propose
the CoreCube which records the multilayer core decomposition on every combi-
nation of layers. We devise algorithms for efficiently computing and compactly
storing CoreCube. The experimental results validate the efficiency of our pro-
posed algorithms and effectiveness of multilayer core decomposition.
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