
Enabling Machine Learning across Heterogeneous Sensor

Networks with Graph Autoencoders

Johan Medrano1[0000-0002-7558-2071] and Fuchun Joseph Lin2

1Institut National des Sciences Appliquées, Toulouse, France
2Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan

Abstract. Machine Learning (ML) has been applied to enable many life-assisting

applications, such as abnormality detection and emdergency request for the soli-

tary elderly. However, in most cases machine learning algorithms depend on the

layout of the target Internet of Things (IoT) sensor network. Hence, to deploy an

application across Heterogeneous Sensor Networks (HSNs), i.e. sensor networks

with different sensors type or layouts, it is required to repeat the process of data

collection and ML algorithm training. In this paper, we introduce a novel frame-

work leveraging deep learning for graphs to enable using the same activity recog-

nition system across HSNs deployed in different smart homes. Using our frame-

work, we were able to transfer activity classifiers trained with activity labels on

a source HSN to a target HSN, reaching about 75% of the baseline accuracy on

the target HSN without using target activity labels. Moreover, our model can

quickly adapt to unseen sensor layouts, which makes it highly suitable for the

gradual deployment of real-world ML-based applications. In addition, we show

that our framework is resilient to suboptimal graph representations of HSNs.

Keywords: Graph Autoencoders, Heterogeneous Sensor Networks, Smart

Homes

1 Introduction

The development of networking technologies and the advance in embedded computing

enable the widespread deployment of IoT sensor networks. In this context, pervasive

sensing and actuation with ubiquitous Internet of Things (IoT) tends to be a natural

direction. The development of machine learning algorithms with pervasive sensing en-

ables applications that can significantly enhance our daily lives. Some outstanding ex-

amples include abnormality detection in the routines of solitary elderly persons [1],

assisted living for people with dementia [2, 3], early detection of Parkinson disease [4].

To perform these tasks, machine learning algorithms can take advantage of a large

amount of data available for training. However, in most cases these algorithms are

strongly tied to the physical layout of the sensors [5]. This makes their general applica-

bility on real-world applications doubtful. First, due to the dependence on the structure

of the sensor network, the deployment of applications to other sensor networks is im-

paired as it requires the collection of new data and the training of a new machine learn-

https://orcid.org/0000-0002-7558-2071

2

ing model. Consequently, each deployment requires a repetition of the same effort. Sec-

ond, when the model is trained online with the collected data, the application requires

a significant amount of time before achieving decent performances. To reduce the de-

ployment overhead and enable large-scale applications, there is an urgent need for a

solution allowing the use of the same machine learning model across HSNs.

The existing frameworks rely on complex methods often tied with the adapted ma-

chine learning model. With the objective of proposing a simpler and more generic ap-

proach to adapt machine learning models, in particular classifiers, across HSNs, we

introduce a novel framework in this paper. In the proposed architecture as depicted in

Fig. 1, a first component, Graph Autoencoder (GAE), handles the task of domain ad-

aptation across HSNs while a second component, the structure-dependent classifier,

ensures the classification task. This design allows the application of fundamentally dif-

ferent classifiers on the top of the same cross-network adapter model.

Fig. 1. Cross-network adaptation framework based on a graph autoencoder

We apply the proposed framework to the use case of activity recognition in smart

homes. Smart homes typically have different layouts and sensors. In practical use cases

such as abnormality detection in the routines of solitary elderly people, the well-being

of the inhabitant would depend on the deployment of a well-trained model for accurate

activity recognition. Focused on this critical use case, we train our encoder with data

gathered in CASAS datasets [6] that were collected in smart homes with heterogeneous

sensor layouts. The contributions of this paper are as follows:

• We propose a simple graph representation for HSN deployed in smart homes to en-

able the application of deep learning methods to the HSNs.

• We introduce a novel graph autoencoder architecture, which uses graph convolu-

tional networks [7] together with differentiable pooling [8] to project data coming

from HSNs into a latent space with fixed dimensions,

• We leverage associative domain adaptation [9] on our graph autoencoders to mini-

mize the discrepancy of latent representations issued from different sensor networks

and thus make the latent space sharable between sensor networks.

3

The rest of this paper is organized as follows. In Section 2, we introduce related meth-

ods which have been used for cross-domain adaptation or learning transfer across sen-

sor networks. Section 3 then provides necessary prerequisites and describes the pro-

posed framework. In Section 4, we introduce the experimental setup, subsequent pa-

rameters settings for our model and collected results. We discuss in Section 5 the results

and parameters influence. Finally, we conclude and open future directions in Section 6.

2 Related Work

Several architectures have been proposed to perform heterogeneous domain adaptation

(HDA), which aims at applying to a target domain the knowledge acquired from a

source domain. Methods can be divided in two categories: feature remapping methods,

focusing on finding a mapping between the features in source and target domains, and

latent space transformation methods, constructing projections of data from source and

target domains in a shared latent space.

The key principle of feature remapping is to find an optimal mapping between fea-

tures of heterogeneous domains where the features in target domain can be associated

to a single feature or to a combination of features in the source domain. Given the

sensor readings of source and target domains and the labels for source domain, Hu and

Yang [10] assumed that feature representations in source and target domains are simi-

lar. Based on this assumption, they constructed a translator that automatically finds a

mapping between source and target features. More recently, Feuz and Cook [11] inves-

tigated heuristics methods to find an optimal many-to-one mapping through the use of

greedy search and genetic algorithms. For these heuristics methods, reported results

show greater accuracy and average recall than a manual feature mapping method; nev-

ertheless, the gigantic search space makes the algorithms computationally expensive.

Among those approaches not limited to sensor networks, Zhou et al. [12] formalized

an optimization algorithm to learn feature remapping with pivots. While other features

are domain-dependents, pivots are described as features that can be commonly shared

across domains; therefore, pivots can be used as the guides to transfer domain-specific

features. Zhou et al. [13] introduced an algorithm to learn a sparse feature transfor-

mation for heterogeneous domain adaptation which allow them to transfer knowledge

among support vector machines. Sukhija et al. [14] extended this work using random

forests to estimate label distributions that are used as pivots across domains. They com-

pared the models with a baseline of classification task on CASAS datasets [6] and

showed a significant decrease of the mean error. However, sparse feature transfor-

mation is a supervised method, hence it requires labels from target domain which is

often not suitable for real applications.

 While feature remapping approaches heterogeneous domain adaptation with a di-

rect mapping between domains, latent space transformation focuses more on construct-

ing a projection space shared across domains. The common principle is to learn to (1)

project domain-specific data to a specific latent space, (2) use the labels from the source

domain to perform a task on the latent space, (3) project data from target domains in

the latent space, and finally (4) perform the desired task, e.g. classification, on latent

4

projections. The main challenge resides in the construction of the latent space projec-

tion. Shi et al. [15] introduced heterogeneous spatial mapping, an unsupervised method,

to align source and target domains using spectral properties, sample selection and

Bayesian modelling of output spaces. Another example is Wang et al. [16], which pro-

vides an algorithm to construct the projection that preserves the local sample neighbor-

hood in source manifolds while letting similar samples from different manifolds be the

neighborhoods in the projection space.

Recent advances in deep learning bring new robust frameworks to approach latent

space transformation. Zhuang et al. [17] used deep autoencoders to create latent em-

beddings of domain-specific features. The Kullback-Leibler divergence between em-

bedding distributions is minimized, which allows embedding spaces to converge to a

shared space. Wang et al. [18] also leveraged autoencoders to construct a shared feature

space, using Maximum Mean Discrepancy and a manifold alignment term to preserve

the local geometric structure of data while reducing differences in latent features distri-

butions. Recently, Haeusser et al. [9] introduced associative domain adaptation, a

method taking advantage of labels in the source domain to create clustered representa-

tions of data from source and target domains. This method requires to have labels from

the source domain but has the benefit of preserving local structure and thus can create

latent spaces with consistent clusters.

In our work, we propose a latent space transformation framework based on a new

method that performs representation learning on the sensor events modelled as graphs.

Representation learning for graphs has been investigated in several works. In particular,

Kipf et al. [19] introduced a two kinds of Graph Autoencoder (GAE) using an inner

product between latent variables to reconstruct the adjacency matrix of graphs. Wang

et al. [20] leveraged linear graph convolutional networks and GAE to propose a new

autoencoder called Marginalized Graph Autoencoder (MGAE). This model corrupts

input nodes representation by randomly turning some components to zero. For models

using graph convolutional networks to acquire a representation of node features and

adjacency, the major issue resides in the variable size of the latent representation, which

depends on the number of nodes in the graph. Here, we present a novel GAE architec-

ture that leverages associative domain adaptation and differentiable pooling to acquire

a structure independent, domain invariant representation of graphs.

3 Structure-Independent Graph Autoencoder for HSNs

The structure-independent model introduced here enables usage of machine learning

across HSNs. It relies on graph convolutional networks, differentiable pooling and as-

sociative domain adaptation loss to learn to project graph representations into a shared

latent space. We first introduce the notation and prerequisite concepts in Section 3.1,

before presenting our framework in Section 3.2.

3.1 Prerequisites

Notations. Let 𝒢 = {𝒱, ℰ, 𝒲} be a graph with a set of 𝑁 nodes 𝑣𝑖 ∈ 𝒱, a set of edges

𝑒 = (𝑣𝑖 , 𝑣𝑗) ∈ ℰ, and edge weights 𝒲(𝑒) ∈ ℝ, ∀𝑒 ∈ ℰ. Given a node ordering for 𝒢,

5

we use the notation 𝒢 = {𝑋, 𝐴}, where 𝐴 ∈ ℝ𝑁×𝑁 represents the adjacency matrix

and each node 𝑣𝑖 is represented by a vector of 𝐹 attributes and collected in a matrix of

node embeddings, 𝑋 ∈ ℝ𝑁×𝐹. In the following, the notation 𝐴̃ is used to refer the nor-

malized adjacency matrix 𝐴̃ = 𝐷̅−1/2𝐴̅𝐷̅−1/2 , where 𝐴̅ = 𝐴 + 𝐼𝑁 , 𝐼𝑁 is the 𝑁 × 𝑁

identity matrix and 𝐷 is the degree matrix, 𝐷̅𝑖𝑗 = ∑ 𝐴̅𝑗 𝑖𝑗
 if 𝑖 = 𝑗, 0 otherwise.

Graph Convolutional Networks. Graph Convolutional Networks (GCNs) [7] learn a

convolution kernel that uses features of neighbors nodes to perform a potentially non-

linear mapping of nodes embeddings from their initial representation to a different

space. A GCN can be compounded of several layers stacked together. Let 𝑑𝑙 be the

number of features at layer 𝑙. In a 𝐿-layer(s) GCN, a single layer transforms nodes rep-

resentation from ℝ𝑁×𝑑𝑙 to ℝ𝑁×𝑑𝑙+1 by applying:

 𝑋(𝑙+1) = 𝜎(𝐴̃𝑋(𝑙)𝑊(𝑙)) (1)

where 𝑊(𝑙) ∈ ℝ𝑑𝑙×𝑑𝑙+1 is a matrix of trainable parameters, 𝜎(∙) is an activation func-

tion, 𝑋(𝑙) ∈ ℝ𝑁×𝑑𝑙 represents the matrix of nodes embedding at layer 𝑙.
A common application is to use the last layer nodes representation as an input for a

differentiable classifier, e.g. a Multi-Layer Perceptron (MLP). The entire model can be

efficiently end-to-end trained to classify graph-structured data. In the following, we use

the notation GCN(𝐴, 𝑋) = 𝐴̃𝑋𝑊 to denote the application of graph convolution on a

graph 𝒢 = {𝐴, 𝑋} with a linear activation function.

Differentiable Pooling. As presented in Eq. 1, a layer of a GCN transforms the nodes

representation without modifying the graph structure. Ying et al. [8] introduced a dif-

ferentiable pooling method to modify the graph structure and to learn hierarchical rep-

resentations of graphs. Pooling layers, also called DIFFPOOL layers, are interleaved be-

tween some layers of a graph neural network to coarse the graph representation. A

DIFFPOOL layer transforms the original graph structure by clustering nodes. At the 𝑙-th

layer, we denote the input matrix of embeddings as 𝑋(𝑙) ∈ ℝ𝑛𝑙×𝑑𝑙 and the input adja-

cency matrix as 𝐴(𝑙) ∈ ℝ𝑛𝑙×𝑛𝑙. The DIFFPOOL layer constructs a new adjacency matrix,

𝐴(𝑙+1) ∈ ℝ𝑛𝑙+1×𝑛𝑙+1 , and a new matrix of embeddings 𝑋(𝑙+1) ∈ ℝ𝑛𝑙+1×𝑑𝑙+1, such as

(𝐴(𝑙+1), 𝑋(𝑙+1)) = DIFFPOOL(𝐴(𝑙), 𝑋(𝑙)).

 To perform the transformation between graph structures, a DIFFPOOL layer learns

to construct an assignment matrix which defines how the nodes in the input graph are

assigned to the nodes in the output graph. Given 𝑆(𝑙) ∈ ℝ𝑛𝑙×𝑛𝑙+1 an assignment matrix

for the 𝑙-th layer, the transformation applied to the graph structure is:

𝑋(𝑙+1) = 𝑆(𝑙)𝑇
𝑍(𝑙)

𝐴(𝑙+1) = 𝑆(𝑙)𝑇
𝐴(𝑙)𝑆(𝑙)

Two GCNs can be used to construct a new matrix of node embeddings 𝑍(𝑙)and the as-

signment matrix 𝑆(𝑙):

6

𝑍(𝑙) = σ (𝐺𝐶𝑁𝑙,𝑍(𝐴(𝑙), 𝑋(𝑙)))

𝑆(𝑙) = softmax(GCN𝑙,𝑃(𝐴(𝑙), X(𝑙)))

where 𝜎(∙) is an activation function and softmax (∙) is the row-wise function defined

as softmax
𝑖
(𝑥) =

exp(𝑥𝑖)

∑ exp(𝑥𝑖,𝑗)𝑗
 .

We emphasize that both the matrix of node embeddings and the adjacency matrix

are constructed using GCNs with fixed output dimensions. Hence, DIFFPOOL layers

learn to project into a latent space with fixed dimensions the graph representations with

potentially different adjacencies or number of nodes.

Associative Domain Adaptation. Introduced by Haeusser et al. [9], associative do-

main adaptation aims at acquiring consistent projection domains from statistically dif-

ferent source domains. Given 𝑍𝑖
𝑠 and 𝑍𝑗

𝑡 as the embeddings respectively from source

and target domains, associative domain adaptation [9] computes a similarity measure

matrix using the dot product 𝑀𝑖,𝑗 = 〈𝑍𝑖
𝑠 , 𝑍𝑗

𝑡〉. Considering the set of source and target

representations as a bipartite graph, this similarity measure matrix is used to estimate

the transition probability from node embedding 𝑍𝑖
𝑆 to node embedding 𝑍𝑗

𝑇:

𝑃𝑖𝑗
𝑠𝑡 = ℙ(𝑍𝑗

𝑡|𝑍𝑖
𝑠) =

exp (𝑀𝑖𝑗)

∑ exp (𝑀𝑖𝑗′)𝑗′

From the transition probability, the authors derive two losses which will be minimized

during the training step. The first one, walker loss, forces round trips within the same

class to have the same probability by expressing ℒwalker = 𝐻(𝑇, 𝑃𝑠𝑡𝑠), where 𝐻 is the

cross-entropy function, 𝑃𝑖𝑗
𝑠𝑡𝑠 = (𝑃𝑠𝑡𝑃𝑡𝑠)𝑖𝑗 is the probability of a first order round trip

and 𝑇𝑖𝑗 = 1/|𝑍𝑖
𝑠| if i and j have the same class, 0 otherwise. The second loss is a visit

loss that forces a uniform probability of visiting target examples, ℒvisit = 𝐻(𝑉, 𝑃visit),

where 𝑉𝑗 = |𝑍𝑡| and 𝑃𝑗
visit = ∑ 𝑃𝑖𝑗

𝑠𝑡
𝑖 .

The overall loss ℒ𝑎𝑠𝑠𝑜𝑐 is the weighted sum of walker and visit losses:

ℒ𝑎𝑠𝑠𝑜𝑐 = 𝛽walkerℒwalker + 𝛽visitℒvisit (2)

A better domain adaptation is achieved if the second weight 𝛽𝑣𝑖𝑠𝑖𝑡 is decreased when

label distribution strongly varies between source and target domains.

3.2 Framework Presentation

The number of sensors, their types and their layouts vary among sensor networks. In-

tuitively, we want to exploit DIFFPOOL layers ability to build latent spaces of fixed

dimensions together with the capacity of associative domain adaptation to acquire do-

main invariant representations. The key idea is to construct structure-independent rep-

resentations of HSNs states usable as inputs for structure-dependent machine learning

7

algorithms. First, we construct a simple graph representation that captures some struc-

tural and semantic knowledge about sensors types and layout in a smart home. Next,

we present our structure-independent autoencoder. Finally, we introduce the overall

objective function enabling domain-invariant representation learning.

Simple Graph Representation for Sensor Networks in Smart Homes. We focus here

on simple sensors attached to appliances in smart homes and producing 1-dimensional

measures. The minimal semantic information necessary to work with these sensors is

their locations in the smart home, e.g. kitchen or bathroom, and the quantity/state they

measure, e.g. room temperature or door state. Adjacency between locations is also

required. Given semantic information and an ordering for sensors, we define the fol-

lowing rule to build adjacency matrices for smart homes:

𝐴𝑖𝑗 = {

1 if sensors 𝑖 and 𝑗 are in the same location
1

2
 if 𝑖 and 𝑗 are in adjacent locations

0 otherwise

As this design of adjacency matrices is arbitrary, we discuss its pertinence and influence

in Section 5.3. We also need to build a simple node representation of sensors states at

a particular time. We first define an ordered set of generic sensor types representing the

quantities or states measured by sensors. As we are informed of sensor state changes

through events, we need to gather sensor events to construct features that are represent-

atives of the overall sensor network states at a particular time. We use fixed-window

sampling to gather sensors events in non-overlapping windows with duration 𝑇𝑤𝑖𝑛𝑑𝑜𝑤 .

For a window [𝑡, 𝑡 + 𝑇𝑤𝑖𝑛𝑑𝑜𝑤[, we construct the sensor network representation 𝑋𝑡 by

counting the number of times each sensor fired, i.e. if the 𝑖-th sensor fires 𝑛 times in

the window and is of the 𝑗-th type, then (𝑋𝑡)𝑖,𝑗 = 𝑛. This guarantees that sensors from

different datasets have the same features: each line of the matrix 𝑋𝑡 is a one-hot vector

representing the sensor’s type and number of firings within the window.

Encoding the Graph Representation. Like other autoencoders, our model consists of

an encoder part, that learns to project the data in the latent space, and a decoder part,

that reconstructs input data from the latent representation. The encoder is compounded

of at least one differentiable pooling layer which uses node features to perform the

projection in a fixed-size latent space. The latent representation is used as input for the

model learning to perform the application task, e.g. classifying states.

For a set of graph representations with the same feature representation but possibly

different number of nodes, we construct the latent representations by applying our en-

coder model, 𝑍 = ENCODER(𝐴, X). For all positive non-zero number of nodes in the

graph representation, the matrix of encoded embeddings satisfies 𝑍 ∈ ℝ𝑁𝐻×𝐷𝐻 , where

𝑁𝐻 and 𝐷𝐻 are hyperparameters of the ENCODER model. Hence, we construct different

graph representations for different sensor networks, and encode them in a latent space

of custom dimensions. In our experiments, we use a simple encoder model defined as

follows:

8

𝐻 = ReLU(GCN𝐻(𝐴, 𝑋))

𝐴enc, 𝑍 = DIFFPOOL(A, H)

where the first layer uses the Rectifier Linear Unit, ReLU(𝑥) = max (0, 𝑥), as activa-

tion function. The DIFFPOOL layer uses GCN, as presented in Eq. 1 with the hyperbolic

tangent as activation function (denoted 𝜎(∙) in Eq. 1).

Training the Graph Autoencoder. From a matrix of encoded embeddings 𝑍, the de-

coder reconstructs an approximate node representation 𝑋̂ = DECODER(𝑍). In our exper-

iments, we use the following two-layers decoder model:

𝐻dec = ReLU (GCNdec,1(𝐴, 𝑍))

𝑋̂ = ReLU (GCNdec,2(𝐴, 𝐻dec))

The overall loss used for training is compounded of several losses with complementary

objectives. To train the model as an autoencoder, we define a reconstruction loss ℒ𝑟𝑒𝑐

that measures the distance between the input matrix of node embeddings 𝑋 and the re-

constructed representation 𝑋̂. In our experiments we used the Euclidian distance be-

tween 𝑋 and 𝑋̂, generally known as L2 loss, although many different losses can be used.

A second loss is associated to the assignment matrix of the pooling layer. Ying et al.

[8] introduced this loss to ensure that the pooling layer finds a nearly optimal clustering

with well-defined nodes assignments. It is expressed as:

ℒ𝑝𝑜𝑜𝑙 = ‖𝐴 − 𝑆𝑆𝑇‖𝐹 +
1

𝑛
∑ 𝐻(𝑆𝑖)

𝑛

𝑖=1

where 𝐻 is the entropy function and 𝑆𝑖 the 𝑖-th row of the assignment matrix 𝑆.

The last loss is the associative domain adaptation loss from Eq. 2, ℒ𝑎𝑠𝑠𝑜𝑐 , ensuring

the consistency of the shared latent space across domains. The overall loss for the graph

autoencoder training step is ℒ𝑎𝑒 = ℒ𝑟𝑒𝑐 + 𝛼poolℒ𝑝𝑜𝑜𝑙 + 𝛼assocℒ𝑎𝑠𝑠𝑜𝑐 . The set of

model parameters is iteratively optimized to decrease this global loss.

4 Experimental Setup

We use the previously introduced encoder model to project HSNs states in a shared

latent space. The machine learning model to transfer across HSNs is then designed and

trained on the latent projections made by the encoder model. The overall model, com-

posed of both the encoder and the model to transfer, is trained and used across HSNs.

We focus here on using our encoder model to transfer activity recognition models

across HSNs deployed in smart homes. Section 4.1 introduces the datasets used in our

experimental setup and the preprocessing applied to data. In Section 4.2, we present the

models and hyperparameters used in our experiments.

9

4.1 Datasets and Preprocessing

Fig. 2. Example of heterogeneous sensor layouts in the smart homes used to collect hh101 (left)

and hh103 (right). Different shapes represent different sensors types.

Datasets. We use hh101 to hh105, a set of Human Horizon (HH) datasets collected by

CASAS [6] on several smart homes with single occupants. The heterogeneity of layouts

among smart homes, depicted in Fig. 2, makes these datasets good data sources to eval-

uate domain adaptation methods. Each dataset provides raw sensor data with annotated

activities. The sensors deployed in the smart homes are either binary sensors attached

to appliances or real-valued sensors such as temperature or brightness sensors. Omitting

the battery sensors, we count a total of 6 different sensor types. In the dataset, accurate

activity annotations result in many labels, which leads to unbalanced class representa-

tions. We gather similar classes together to form 13 labels used for activity recognition.

In Table 1, we provide a description of the datasets with the number of sensors, events,

activities as well as the sensor types and activity labels used for evaluation.

Table 1. Description of Human Horizon datasets from CASAS [6]

Dataset hh101 hh102 hh103 hh104 hh105

Nb. of sensors 40 64 37 70 53

Nb. of events 321,645 407,583 164,908 478,003 222,591

Sensor types
Door switch, Light switch, Light, Wide area motion, Tem-

perature, Motion

Activity

clusters

Unclassified, Personal Hygiene, Cooking, Eating, Working,

Entering/Leaving Home, House Keeping, Taking Medicine,

Washing Dishes, Toilet, Relaxing, Exercising, Other

Preprocessing. Using smart homes layouts as depicted in Fig. 2, we apply the method

presented in Section 3.2. to create simple graphs representations of smart homes. We

use a window length of 𝑇𝑤𝑖𝑛𝑑𝑜𝑤 = 180 seconds to create graph representations. The

activity label associated with a window is set to the activity performed during the long-

est part of the time window. The six different sensor types used to build representations

of sensors states are presented in Table 1.

10

4.2 Experimental Setup

We use simple and well-known machine learning algorithms to perform activity recog-

nition: decision trees (DT), k-nearest neighbors (KNN) and multilayer perceptrons

(MLP). Our DT classifiers use Gini impurity to determine the quality of splits. We

always choose the best split to recursively divide a set of training samples in two sub-

sets, with a maximum number of leaves set to 500. Our KNN models classify a point

by returning the value of the 𝑘 = 3 nearest neighbors. We construct two-layers MLP

with 64 hidden units and hyperbolic tangent activation in the first layer, and 13 output

units with softmax activation in the second layer. We refer to these baseline models as

DT, KNN and MLP. We use a set of preprocessed data with the corresponding activity

labels to train three activity classifiers without encoder. Data are dispatched between a

training and a testing set. The MLP model is trained to minimize the cross-entropy loss

on sample labels, using a batch size of 64 and Adam optimizer [21] with a learning rate

of 5 × 10−4. We add an L2 regularizer loss with a weight of 1 × 10−4 to avoid over-

fitting.

 We created our GAE model with the architecture described in Section 3. The first

GCN layer transforms nodes representations from the 𝐹 = 6 shared features, i.e. the

number of sensor types, to 32 latent features. Next, the DIFFPOOL layer performs a

projection in a latent space of fixed dimensions 𝑁𝐻 × 𝐹𝐻, with 𝑁𝐻 = 64 and 𝐹𝐻 = 16.

We empirically selected appropriate loss weights, resulting in a pooling loss weight

𝛼𝑝𝑜𝑜𝑙 = 1 × 10−4 and an association loss weight 𝛼𝑎𝑠𝑠𝑜𝑐 = 0.1, with 𝛽𝑤𝑎𝑙𝑘𝑒𝑟 = 1 and

𝛽𝑣𝑖𝑠𝑖𝑡 = 0.3. The model is trained with a batch size of 64 using Adam optimizer and a

learning rate of 5 × 10−4. We trained the model on 100 epochs, using early stopping

with a patience of 10, i.e. the training stops if the validation loss does not decrease for

10 consecutive epochs. We used two different datasets to train the autoencoder. Train-

ing samples are then encoded with our model and used to train new classifiers with the

same hyperparameters as the baselines. We refer to the combination of the GAE with

DT (resp. KNN and MLP) models as GAE+DT (resp. GAE+KNN, GAE+MLP). We

take advantage of MLP differentiability by end-to-end fine-tuning the GAE+MLP

model with a learning rate of 5 × 10−5.

 In the following, we use two metrics to evaluate our models. The first one is the

well-known F1-score, calculated for a classification task as the harmonic average of

precision and recall. We report the average and 95% confidence interval of the F1-score

collected on 10 experiments. Due to strong variations between baseline scores, an ab-

solute metric like F1-score is heterogeneous across models. We introduce a second

metric, called relative score, to compare on a common scale models’ transferability

across datasets. Given a model composed of a classifier trained with a graph autoen-

coder, the relative score for a target dataset is the ratio between the average F1-score

obtained by the model and the average F1-score achieved by the classifier baseline,

expressed in percent. This score quantifies how the model performs relatively to its

baseline.

11

5 Results and Discussion

Our framework aims at applying the same machine learning model to classify activities

using sensor events from several HSNs deployed in smart homes. The activity classifier

model can be trained using available labels and data from one or several datasets. We

focus on evaluating the performances of our model in a simple case where the activity

classifier model is trained on a single source dataset, representing data from a source

smart home layout. The model is used to classify activities on a target dataset, repre-

senting a target smart home layout. Results for transfer of activity classifiers models

for different source → target datasets pairs are reported and discussed in Section 5.1.

Due to the use of associative domain adaptation loss, the encoder model requires data

from the target dataset in addition to data and labels from the source dataset. In Section

5.2, we quantify the relative score for activity recognition depending on the quantity of

available data for target dataset to evaluate how fast activity classifier will adapt to

unseen HSNs. In Section 5.3, we discuss the pertinence of the arbitrary adjacency ma-

trix design introduced in Sections 3.2 and evaluate the resilience of our framework to

suboptimal adjacency matrix design by comparing transfer results for different kinds of

adjacency matrix.

5.1 Results for Transfer of Machine Learning Models across HSNs

We evaluate the ability of the encoder to transfer the knowledge acquired on a source

HSN to a target HSN. GAE+DT, GAE+KNN and GAE+MLP models are trained using

data and labels from a source dataset but only data from a target dataset. This experi-

ment represents the practical case where labeled data are available only for the source

sensor network, but some unlabeled data have been collected on the target sensor net-

work. The results collected for some source → target pairs are reported in Table 2.

Table 2. F1-score and relative score of GAE models evaluated on different datasets pairs.

Model

hh101

→ hh102

hh102

→ hh101

hh103

→ hh105

hh104

→ hh103

hh105

→ hh104

GAE

+DT

F1-score 56.6 (0.9) 57.8 (1.7) 62.6 (1.0) 52.3 (1.9) 45.3 (0.6)

Relative

score
83.7 75.7 80.7 75.8 69.4

GAE

+KNN

F1-score 55.6 (0.3) 54.5 (0.6) 62.2 (0.6) 50.5 (0.8) 44.1 (0.3)

Relative

score
84.8 74.1 81.6 74.6 70.3

GAE

+MLP

F1-score 57.8 (0.7) 57.1 (2.5) 65.1 (0.7) 48.1 (0.9) 45.8 (0.5)

Relative

score 104.7 85.1 92.7 81.3 81.2

Results show that:

12

• GAE+DT reaches a mean F1-score of 54.9% on the presented source-target pairs.

The model performs differently among datasets pairs, with relative score reaching

up to 83.7% of the DT baseline score for the pair hh101 → hh102 and down to 69.4%

of the DT baseline score for the hh105 → hh104. In average, the GAE+DT model

trained on a source dataset achieves 77.0% of the DT baseline score on the target

dataset.

• The GAE+KNN model achieves an average relative score of 77.1% of the KNN

baseline score, with an average F1-score of 53.4%. Like the GAE+DT model, the

higher relative score, 84.8%, is reached for the pair hh101 → hh102. The

GAE+KNN model obtains its lower relative scores for hh102 → hh101 and hh105

→ hh104, with respectively 74.1% and 70.3% of the KNN baseline score.

• The GAE+MLP model reaches an average relative score of 88.7% of the MLP base-

line score, outperforming GAE+DT and GAE+KNN. Once again, the highest rela-

tive score is achieved for the pair hh101 → hh102, with a F1-score of 57.8% repre-

senting 104.7% of the MLP baseline score. Like GAE+DT and GAE+KNN, the

model achieves its lower relative scores for hh104 → hh103 and hh105 → hh104

with respectively 81.3% and 81.2% of the baseline score.

All three models perform differently across source-target pairs. However, we observe

that the scores are consistent among models: all of the models achieved their highest

relative score on hh101 → hh102 and their second highest relative score on hh103 →

hh105. GAE+DT and GAE+KNN reached their two lowest relative score on hh105 →

hh104 and hh102 → hh101, while GAE+MLP achieved its lowest relative scores on

hh105 → hh104 and hh104 → hh103. These results give the impression that the diffi-

culty of the transfer task varies among source-target datasets pairs, causing different

relative scores. There is no explanation on the observed results difference and further

investigations would be required to identify the causes underlying this difference.

In our experiments, the GAE+MLP model always outperformed the GAE+DT and

GAE+KNN models in terms of relative score. This fact is due to two reasons. First, the

MLP baseline is a differentiable model with more hyperparameters than the DT or KNN

baselines. Hence, despite our efforts to select appropriate hyperparameters, the MLP

baseline is more likely than DT or KNN to achieve suboptimal results. Consequently,

the selected hyperparameters can be more appropriate for GAE+MLP than for the MLP

baseline, resulting in a greater relative score for the GAE+MLP model. The second

reason behind GAE+MLP high scores is fine-tuning. While the encoder and the classi-

fier are only trained separately for GAE+DT and GAE+KNN, GAE+MLP benefits

from an end-to-end fine-tuning of the entire model. Hence, the GAE is optimized to

help the MLP achieving better activity recognition results. This fine-tuning step helps

GAE+MLP to achieve higher relative scores than GAE+DT or GAE+KNN.

5.2 Evaluation of Deployment Speed.

Some data from the target dataset is required to apply associative domain adaptation in

our framework. We evaluate how the number of data collected on the target environ-

ment influences the average relative score of our models. Relative scores for different

13

number of data from target datasets are reported on Fig. 3. As we use a fixed-size win-

dow of three minutes, each data point represents three minutes, e.g. 20 data points rep-

resent one hour.

Fig. 3. Evaluation of the Adaptation Speed: Average Relative Score for Different Number of

Data Points from Target Dataset

We observe that the average relative score will be slightly increased if there is more

data from the target HSN. This is the main purpose of using associative domain adap-

tation. More surprisingly, the model still performs quite decently with a low number of

data from target environment. For instance, the GAE+DT model achieves 73.2% aver-

age relative score with only 20 data points from the target dataset, which represents

only 3.8% less than the relative score obtained in Section 5.1 with every available data

points. Hence, if more data points from the target HSNs helps transferring the machine

learning model across HSNs, the model still performs decently when only a few data

from target HSN is available.

5.3 Influence of the Adjacency Matrix Design

In Section 3.2, we arbitrarily design adjacency matrices to express intuitive adjacency

between sensors given the layout of an HSN in a smart home. However, this arbitrary

design might be suboptimal. Adjacency matrix is a fundamental parameter in graph

convolutional layers and strongly influences the way DIFFPOOL layers cluster nodes.

Though it goes beyond our scope to investigate which design of adjacency matrix

would best represent sensors layouts in smart homes, we still want to evaluate the in-

fluence of the adjacency matrix design.

The previously evaluated model uses the adjacency matrix design from Section 3.2,

which we call Default in the following. The transfer learning results obtained with three

additional, different adjacency matrices are compared against the results obtained with

our previously evaluated model. The first kind of adjacency matrix (Identity) is a zero

matrix, which results in the identity matrix after symmetric normalization. The second

kind of adjacency matrix (FC-U) represents an unweighted fully connected graph. The

third kind of adjacency matrix (FC-W) is based on the adjacency matrix design intro-

duced in Section 3.2 but turned into a fully connected graph by setting the weight be-

tween sensor in different non-adjacent locations to 0.1 instead of 0.

70%

74%

78%

82%

86%

90%

0 500 1000 1500 2000

A
v
er

ag
e

re
la

ti
v
e

sc
o
re

Number of data points from target dataset

GAE+DT GAE+KNN GAE+MLP

14

For these different adjacency matrix designs, we trained and evaluated GAE+DT

models on pairs of source-target datasets. We choose to report results for the GAE+DT

model as it achieves decent performances within a limited time and requires only a few

hyperparameters tuning. Relative scores obtained for the four different adjacencies de-

signs are presented in Table 3.

We see that the proposed adjacency matrix design outperforms other kinds of adja-

cency matrices on every source-target dataset pair, except for hh101→ hh102. Average

relative scores are 77.0% for the Default design, 75.0% for the Identity design, 74.6%

for the FC-U design and 75.9% for the FC-W design. Hence, if the choice of adjacency

in the graph structure helps achieving better transfer results, its influence seems limited.

In our case, the worst choice was to represent the sensor network as an unweighted fully

connected graph. However, this poor choice of a graph structure only resulted in a loss

of 2.4% of the average relative score. We conclude that the influence of the adjacency

matrix is limited, and thus our framework is relatively resilient to suboptimal designs

of the graph structures representing the HSNs.

Table 3. Relative Scores for Different Kinds of Adjacency Matrices

Kind of

Adjacency

hh101

→ hh102

hh102

→ hh101

hh103

→ hh105

hh104

→ hh103

hh105

→ hh104

Default 83.7 75.7 80.7 75.8 69.4

Identity 86.5 74.1 76.7 68.0 69.4

FC-U 84.6 72.1 78.9 68.3 69.0

FC-W 83.6 74.3 78.7 75.5 67.4

6 Conclusion and future work

When designing an application based on machine learning and targeting sensor net-

works, the heterogeneity of sensor layouts and types is a common issue. Indeed, the

data collection and model training effort must be repeated for each new sensor network.

A practical example is activity recognition is smart homes: a new machine learning

model must be created and trained for each new smart home. In this paper, we propose

a new method leveraging graph representation learning with autoencoders to build la-

tent representations independent from the type or layout of sensors across HSNs.

We introduce a simple graph representation of the state of HSNs in smart home to

enable the use of graph autoencoders. Our model relies on differentiable pooling and

GCNs to project the representations of events in HSNs to latent spaces of fixed dimen-

sion. We then train our model as an autoencoder with an associative domain adaptation

term encouraging to share the latent spaces between HSNs. Activity recognition models

are trained to classify activities from the shared latent space, which makes the models

independent to the structure of target HSNs. We focus here on transferring activity

recognition models across HSNs deployed in smart homes. We use CASAS datasets to

train baseline activity classifiers models based on decision trees, k-nearest neighbors

15

and multilayer perceptron. After building the graph representation for events in HSNs,

we train our graph autoencoder model to create the shared latent representations of

events in HSNs. Activity classifiers models are trained on top of the shared latent spaces

and compared with their respective baselines.

The obtained results imply that our framework allows to train an activity recognition

model based on DT (resp. KNN, MLP) on data from a source smart home with known

activity labels and to apply the model to data from a target smart home without activity

labels, with an F1-score representing in average 77.0% (resp. 75,0%, 88,7%) of the

baseline score on the target smart home. Moreover, the models require only a few data

from target HSN to achieve decent performances. In addition, we assume that the pro-

posed adjacency matrix design is suboptimal and we evaluate the influence of the graph

structure on the performances of our model. It appears that the structure of the graphs

representing the state of HSNs have a quite limited influence on the results. Hence, our

model still performs decently with suboptimal graph representations of HSNs.

 Enabling the usage of graph neural networks for HSNs opens the range of applicable

solutions. The key idea is to instill prior structural knowledge into a machine learning

algorithm, with the intuition that models can exploit this structural knowledge to ac-

quire structure-independent representations of sensor events. However, as we presented

in Section 3.2, the design of an adjacency matrix, and hence the choice of a structural

representation, is a complex but fundamental step. Recent work on graph neural net-

works by Schlichtkrull et al. [22] focused in instilling semantic knowledge into multi-

graphs and proposed frameworks to perform semantic-relation-wise graph convolution.

Hence, each layer can acquire a convolution kernel for type of semantic relationship.

In these models, adjacency matrices are relation-wise, meaning that we can express

different kinds of semantic relationships between sensors. Hence, in the context of cog-

nitive IoT, we can exploit the ubiquity of semantic annotations to create complex struc-

tural representations of sensor networks. For instance, sensor adjacency in smart envi-

ronment could represent that sensors are physically adjacent, but also that they share

the same sensor type or are deployed in the same type of room. To summarize, semantic

GCNs could take advantage of rich semantic annotations to enhance machine learning

applications.

Acknowledgment

This is a preprint version of an article published in: Chatzigiannakis I., De Ruyter B.,

Mavrommati I. (eds) Ambient Intelligence. AmI 2019. Lecture Notes in Computer Sci-

ence, vol 11912. The final authenticated version is available online at:

https://doi.org/10.1007/978-3-030-34255-5_11.

The project reported in this paper is sponsored by Ministry of Science and Technology

(MOST) of Taiwan Government under Project Number MOST 107-2218-E-009-020 -

16

References

1. Suryadevara, N.K., Mukhopadhyay, S.C., Wang, R., Rayudu, R.K.: Forecasting the behavior

of an elderly using wireless sensors data in a smart home. Eng. Appl. Artif. Intell. 26, 2641–

2652 (2013). doi:10.1016/J.ENGAPPAI.2013.08.004

2. Orpwood, R., Adlam, T., Evans, N., Chadd, J., Self, D.: Evaluation of an assisted-living

smart home for someone with dementia. J. Assist. Technol. 2, 13–21 (2008)

3. Lotfi, A., Langensiepen, C., Mahmoud, S.M., Akhlaghinia, M.J.: Smart homes for the

elderly dementia sufferers: Identification and prediction of abnormal behaviour. J. Ambient

Intell. Humaniz. Comput. 3, 205–218 (2012). doi:10.1007/s12652-010-0043-x

4. Barth, J., Klucken, J., Kugler, P., Kammerer, T., Steidl, R., Winkler, J., Hornegger, J.,

Eskofier, B.: Biometric and mobile gait analysis for early diagnosis and therapy monitoring

in Parkinson’s disease. In: 2011 Annual International Conference of the IEEE Engineering

in Medicine and Biology Society. pp. 868–871. IEEE (2011)

5. Chiang, Y., Lu, C.-H., Hsu, J.Y.-J.: A Feature-Based Knowledge Transfer Framework for

Cross-Environment Activity Recognition Toward Smart Home Applications. IEEE Trans.

Human-Machine Syst. 47, 310–322 (2017). doi:10.1109/THMS.2016.2641679

6. Cook, D.J., Crandall, A.S., Thomas, B.L., Krishnan, N.C.: CASAS: A Smart Home in a Box.

Computer (Long. Beach. Calif). 46, 62–69 (2013). doi:10.1109/MC.2012.328

7. Kipf, T.N., Welling, M.: Semi-Supervised Classification with Graph Convolutional

Networks. arXiv Prepr. arXiv1609.02907. (2016)

8. Ying, R., You, J., Morris, C., Ren, X., Hamilton, W.L., Leskovec, J.: Hierarchical Graph

Representation Learning with Differentiable Pooling. In: Advances in Neural Information

Processing Systems. pp. 4800–4810 (2018)

9. Haeusser, P., Frerix, T., Mordvintsev, A., Cremers, D.: Associative Domain Adaptation.

Proc. IEEE Int. Conf. Comput. Vis. 2017-Octob, 2784–2792 (2017).

doi:10.1109/ICCV.2017.301

10. Hu, D.H., Yang, Q.: Transfer learning for activity recognition via sensor mapping. In: IJCAI

International Joint Conference on Artificial Intelligence. pp. 1962–1967 (2011)

11. Dillon Feuz, K., J. Cook, D., Feuz, K.D., Cook, D.J.: Heterogeneous transfer learning for

activity recognition using heuristic search techniques. (2014)

12. Zhou, G., He, T., Wu, W., Hu, X.T.: Linking Heterogeneous Input Features with Pivots for

Domain Adaptation.

13. Zhou, J.T., Tsang, I.W., Pan, S.J., Tan, M.: Heterogeneous Domain Adaptation for Multiple

Classes. (2014)

14. Sukhija, S., Krishnan, N.C., Singh, G.: Supervised Heterogeneous Domain Adaptation via

Random Forests. In: International Joint Conferences on Artificial Intelligence. pp. 2039–

2045 (2016)

15. Shi, X., Liu, Q., Fan, W., Yu, P.S., Zhu, R.: Transfer learning on heterogenous feature spaces

via spectral transformation. Proc. - IEEE Int. Conf. Data Mining, ICDM. 1049–1054 (2010).

doi:10.1109/ICDM.2010.65

16. Wang, C., Mahadevan, S.: Manifold alignment without correspondence. (2009)

17. Zhuang, F., Cheng, X., Luo, P., Pan, S.J., He, Q.: Supervised representation learning:

Transfer learning with deep autoencoders. In: IJCAI International Joint Conference on

Artificial Intelligence. pp. 4119–4125 (2015)

18. Wang, X., Ma, Y., Cheng, Y., Zou, L., Rodrigues, J.J.P.C.: Heterogeneous domain

adaptation network based on autoencoder. J. Parallel Distrib. Comput. 117, 281–291 (2018).

doi:10.1016/j.jpdc.2017.06.003

19. Kipf, T.N., Welling, M.: Variational Graph Auto-Encoders. (2016)

17

20. Wang, C., Pan, S., Long, G., Zhu, X., Jiang, J.: MGAE: Marginalized Graph Autoencoder

for Graph Clustering. doi:10.1145/3132847.3132967

21. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. (2014)

22. Schlichtkrull, M., Kipf, T.N., Amsterdam pbloem, V., Rianne van den Berg, vunl, Titov, I.,

Welling, M.: Modeling Relational Data with Graph Convolutional Networks Peter Bloem.

In: European Semantic Web Conference. pp. 593–607 (2017)

