Abstract
With renewed prominence of Explainable AI (XAI), many areas are revisiting early work on Explainability. Within the broader field of Artificial Intelligence (AI), Ambient Intelligence (AmI) has an advantage in the development of transparent and ethical systems because such work has long been an integral part of research, development and operations in AmI. In this paper we argue that, because of the paradigm requirements of system intelligence, social intelligence and embeddedness, AmI is uniquely prepared to support the push for ethical and transparent technology development. We argue that Ambient Intelligent Systems are well suited to infer when an explanation might be needed (and of what kind), and the form that it should take. We further propose AmI devices as mediators between humans and machines because they can combine social and technical systems in a fully embedded way.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achinstein, P.: The Nature of Explanation. Oxford University Press, Oxford (1983)
Biran, O., Cotton, C.: Explanation and justification in machine learning: a survey. In: IJCAI 2017 Workshop on Explainable AI (XAI) (2017)
Cassens, J., Kofod-Petersen, A.: Explanations and case-based reasoning in ambient intelligent systems. In: Wilson, D.C., Khemani, D. (eds.) ICCBR 2007 Workshop Proceedings, Belfast, Northern Ireland, pp. 167–176 (2007)
Cassens, J., Wegener, R.: Making use of abstract concepts–systemic-functional linguistics and ambient intelligence. In: Bramer, M. (ed.) IFIP AI 2008. ITIFIP, vol. 276, pp. 205–214. Springer, Boston, MA (2008). https://doi.org/10.1007/978-0-387-09695-7_20
De Ruyter, B., Aarts, E.: Experience research: a methodology for developing human-centered interfaces. In: Nakashima, H., Aghajan, H., Augusto, J.C. (eds.) Handbook of Ambient Intelligence and Smart Environments, pp. 1039–1067. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-93808-0_39
Dourish, P.: What we talk about when we talk about context. Pers. Ubiquit. Comput. 8(1), 19–30 (2004)
Edwards, B.J., Williams, J.J., Gentner, D., Lombrozo, T.: Explanation recruits comparison in a category-learning task. Cognition 185, 21–38 (2019)
Floridi, L., et al.: AI4people – an ethical framework for a good ai society: opportunities, risks, principles, and recommendations. Mind. Mach. 28(4), 689–707 (2018)
van Fraassen, B.C.: The Scientific Image. Clarendon Press, Oxford (1980)
Gunning, D., Aha, D.: Darpa’s explainable artificial intelligence (XAI) program. AI Mag. 40(2), 44–58 (2019)
Halliday, M.A.: Language as a Social Semiotic: The Social Interpretation of Language and Meaning. University Park Press, Baltimore (1978)
Hasan, R.: Situation and the definition of genre. In: Grimshaw, A. (ed.) What’s Going on Here? Complementary Analysis of Professional Talk: Volume 2 of the Multiple Analysis Project. Ablex, Norwood (1994)
Hasan, R.: Speaking with reference to context. In: Ghadessy, M. (ed.) Text and Context in Functional Linguistics. John Benjamins, Amsterdam (1999)
Kofod-Petersen, A., Aamodt, A.: Contextualised ambient intelligence through case-based reasoning. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 211–225. Springer, Heidelberg (2006). https://doi.org/10.1007/11805816_17
Kofod-Petersen, A., Cassens, J.: Modelling with problem frames: explanations and context in ambient intelligent systems. In: Beigl, M., Christiansen, H., Roth-Berghofer, T.R., Kofod-Petersen, A., Coventry, K.R., Schmidtke, H.R. (eds.) CONTEXT 2011. LNCS (LNAI), vol. 6967, pp. 145–158. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24279-3_17
Leake, D.B.: Evaluating Explanations: A Content Theory. Lawrence Erlbaum Associates, New York (1992)
Leake, D.B.: Goal-based explanation evaluation. In: Goal-Driven Learning, pp. 251–285. MIT Press, Cambridge (1995)
Lisboa, P.J.G.: Interpretability in machine learning – principles and practice. In: Masulli, F., Pasi, G., Yager, R. (eds.) WILF 2013. LNCS (LNAI), vol. 8256, pp. 15–21. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03200-9_2
Lombrozo, T.: The structure and function of explanations. Trends Cogn. Sci. 10(10), 464–470 (2006)
Lombrozo, T.: The instrumental value of explanations. Philos. Compass 6(8), 539–551 (2011)
Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. (2018)
Roth-Berghofer, T.R., Cassens, J.: Mapping goals and kinds of explanations to the knowledge containers of case-based reasoning systems. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 451–464. Springer, Heidelberg (2005). https://doi.org/10.1007/11536406_35
Schank, R.C.: Explanation Patterns - Understanding Mechanically and Creatively. Lawrence Erlbaum, New York (1986)
Shortliffe, E.H.: Computer-based Medical Consultations: MYCIN, New York (1976)
Streitz, N., Charitos, D., Kaptein, M., Böhlen, M.: Grand challenges for ambient intelligence and implications for design contexts and smart societies. J. Ambient. Intell. Smart Environ. 11(1), 87–107 (2019)
Swartout, W.R.: What kind of expert should a system be? XPLAIN: a system for creating and explaining expert consulting programs. Artif. Intell. 21, 285–325 (1983)
Sørmo, F., Cassens, J., Aamodt, A.: Explanation in case-based reasoning - perspectives and goals. Artif. Intell. Rev. 24(2), 109–143 (2005)
Vasilyeva, N., Wilkenfeld, D., Lombrozo, T.: Contextual utility affects the perceived quality of explanations. Psychon. Bull. Rev. 24(5), 1436–1450 (2017)
Wegener, R., Cassens, J., Butt, D.: Start making sense: systemic functional linguistics and ambient intelligence. Rev. d’Intelligence Artif. 22(5), 629–645 (2008). https://doi.org/10.3166/ria.22.629-645
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Cassens, J., Wegener, R. (2019). Ambient Explanations: Ambient Intelligence and Explainable AI. In: Chatzigiannakis, I., De Ruyter, B., Mavrommati, I. (eds) Ambient Intelligence. AmI 2019. Lecture Notes in Computer Science(), vol 11912. Springer, Cham. https://doi.org/10.1007/978-3-030-34255-5_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-34255-5_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34254-8
Online ISBN: 978-3-030-34255-5
eBook Packages: Computer ScienceComputer Science (R0)