Abstract
Different body sensors and modalities can be used in human action recognition, either separately or simultaneously. Multi-modal data can be used in recognizing human action. In this work we are using inertial measurement units (IMUs) positioned at left and right hands with first person vision for human action recognition. A novel statistical feature extraction method was proposed based on curvature of the graph of a function and tracking left and right hand positions in space. Local visual descriptors have been used as features for egocentric vision. An intermediate fusion between IMUs and visual sensors has been performed. Despite of using only two IMUs sensors with egocentric vision, our classification result achieved is 99.61% for recognizing nine different actions. Feature extraction step could play a vital step in human action recognition with limited number of sensors, hence, our method might indeed be promising.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abebe, G., Cavallaro, A.: Inertial-vision: cross-domain knowledge transfer for wearable sensors. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1392–1400 (2017)
Akpinar, S., Alpaslan, F.N.: Video action recognition using an optical flow based representation. In: IPCV, the Steering Committee of the World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), p. 1 (2014)
Alhersh, T., Stuckenschmidt, H.: On the combination of IMU and optical flow for action recognition. In: 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). IEEE (2019)
Alhersh, T., Stuckenschmidt, H.: Unsupervised fine-tuning of optical flow for better motion boundary estimation. In: Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Prague, Czech Republic, 25–27 February 2019. VISAPP, vol. 5. pp. 776–783. SciTePress, Setúbal (2019). https://doi.org/10.5220/0007343707760783. http://ub-madoc.bib.uni-mannheim.de/49196/, online-Resource
Arabacı, M.A., Özkan, F., Surer, E., Jančovič, P., Temizel, A.: Multi-modal egocentric activity recognition using audio-visual features. arXiv preprint arXiv:1807.00612 (2018)
Ashry, S., Elbasiony, R., Gomaa, W.: An LSTM-based descriptor for human activities recognition using IMU sensors. In: Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics, ICINCO, vol. 1, pp. 494–501 (2018)
Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015)
Betancourt, A., Morerio, P., Regazzoni, C.S., Rauterberg, M.: The evolution of first person vision methods: a survey. IEEE Trans. Circuits Syst. Video Technol. 25(5), 744–760 (2015)
Bevilacqua, A., MacDonald, K., Rangarej, A., Widjaya, V., Caulfield, B., Kechadi, T.: Human activity recognition with convolutional neural networks. In: Brefeld, U., et al. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11053, pp. 541–552. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10997-4_33
Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 500–513 (2011)
Chen, C., Jafari, R., Kehtarnavaz, N.: A survey of depth and inertial sensor fusion for human action recognition. Multimed. Tools Appl. 76(3), 4405–4425 (2017)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
Coskun, H., Tan, D.J., Conjeti, S., Navab, N., Tombari, F.: Human motion analysis with deep metric learning. arXiv preprint arXiv:1807.11176 (2018)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection (2005)
Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 428–441. Springer, Heidelberg (2006). https://doi.org/10.1007/11744047_33
Dasarathy, B.V.: Sensor fusion potential exploitation-innovative architectures and illustrative applications. Proc. IEEE 85(1), 24–38 (1997)
Davila, J.C., Cretu, A.M., Zaremba, M.: Wearable sensor data classification for human activity recognition based on an iterative learning framework. Sensors 17(6), 1287 (2017)
Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2758–2766 (2015)
Elmenreich, W.: An introduction to sensor fusion. Vienna University of Technology, Austria 502 (2002)
Fortun, D., Bouthemy, P., Kervrann, C.: Optical flow modeling and computation: a survey. Comput. Vis. Image Underst. 134, 1–21 (2015)
Horn, B.K., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)
Ijjina, E.P., Chalavadi, K.M.: Human action recognition in RGB-D videos using motion sequence information and deep learning. Pattern Recogn. 72, 504–516 (2017)
Jalloul, N., Porée, F., Viardot, G., LHostis, P., Carrault, G.: Activity recognition using complex network analysis. IEEE J. Biomed. Health Inform. 22(4), 989–1000 (2018)
Kumar, S.S., John, M.: Human activity recognition using optical flow based feature set. In: 2016 IEEE International Carnahan Conference on Security Technology (ICCST), pp. 1–5. IEEE (2016)
Lu, Y., Velipasalar, S.: Human activity classification incorporating egocentric video and inertial measurement unit data. In: 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 429–433. IEEE (2018)
Moutinho, N.M.B.: Video and image match searching, US Patent App. 15/252,142, 2 March 2017
Moya Rueda, F., Grzeszick, R., Fink, G., Feldhorst, S., ten Hompel, M.: Convolutional neural networks for human activity recognition using body-worn sensors. In: Informatics, vol. 5, p. 26. Multidisciplinary Digital Publishing Institute (2018)
Nguyen, T.H.C., Nebel, J.C., Florez-Revuelta, F., et al.: Recognition of activities of daily living with egocentric vision: a review. Sensors 16(1), 72 (2016)
Romero, H., Salazar, S., Lozano, R., Benosman, R.: Fusion of optical flow and inertial sensors for four-rotor rotorcraft stabilization. IFAC Proc. Vol. 40(15), 209–214 (2007)
Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Advances in Neural Information Processing Systems, pp. 3856–3866 (2017)
Sevilla-Lara, L., Liao, Y., Guney, F., Jampani, V., Geiger, A., Black, M.J.: On the integration of optical flow and action recognition. arXiv preprint arXiv:1712.08416 (2017)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Singh, S., Arora, C., Jawahar, C.: First person action recognition using deep learned descriptors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2620–2628 (2016)
Stein, S., McKenna, S.J.: Recognising complex activities with histograms of relative tracklets. Comput. Vis. Image Underst. 154, 82–93 (2017)
Sudhakaran, S., Escalera, S., Lanz, O.: Hierarchical feature aggregation networks for video action recognition. arXiv preprint arXiv:1905.12462 (2019)
Sudhakaran, S., Escalera, S., Lanz, O.: LSTA: long short-term attention for egocentric action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9954–9963 (2019)
Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-NET: CNNs for optical flow using pyramid, warping, and cost volume. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8934–8943 (2018)
Sun, J., Fu, Y., Li, S., He, J., Xu, C., Tan, L.: Sequential human activity recognition based on deep convolutional network and extreme learning machine using wearable sensors. J. Sensors 2018 (2018)
Sun, S., Kuang, Z., Sheng, L., Ouyang, W., Zhang, W.: Optical flow guided feature: a fast and robust motion representation for video action recognition. In: CVPR (2018)
X-IO Technologies Limited: X-IO technologies limited. UK company (2019). http://x-io.co.uk/
De la Torre, F., et al.: Guide to the Carnegie Mellon university multimodal activity (CMU-MMAC) database. Robotics Institute, p. 135 (2008)
Uijlings, J., Duta, I.C., Sangineto, E., Sebe, N.: Video classification with densely extracted HOG/HOF/MBH features: an evaluation of the accuracy/computational efficiency trade-off. Int. J. Multimed. Inf. Retr. 4(1), 33–44 (2015)
Uijlings, J.R., Duta, I.C., Rostamzadeh, N., Sebe, N.: Realtime video classification using dense HOF/HOG. In: Proceedings of International Conference on Multimedia Retrieval, p. 145. ACM (2014)
Wang, H., Kläser, A., Schmid, C., Cheng-Lin, L.: Action recognition by dense trajectories. In: CVPR 2011-IEEE Conference on Computer Vision and Pattern Recognition, pp. 3169–3176. IEEE (2011)
Wang, X., Wu, Y., Zhu, L., Yang, Y.: Baidu-UTS submission to the EPIC-kitchens action recognition challenge 2019. arXiv preprint arXiv:1906.09383 (2019)
Wannenwetsch, A.S., Keuper, M., Roth, S.: ProbFlow: joint optical flow and uncertainty estimation. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1182–1191. IEEE (2017)
Wrzalik, M., Krechel, D.: Human action recognition using optical flow and convolutional neural networks. In: 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 801–805. IEEE (2017)
Xu, C., Chai, D., He, J., Zhang, X., Duan, S.: InnoHAR: a deep neural network for complex human activity recognition. IEEE Access 7, 9893–9902 (2019)
Yordanova, K., Krüger, F.: Creating and exploring semantic annotation for behaviour analysis. Sensors 18(9), 2778 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Alhersh, T., Brahim Belhaouari, S., Stuckenschmidt, H. (2019). Action Recognition Using Local Visual Descriptors and Inertial Data. In: Chatzigiannakis, I., De Ruyter, B., Mavrommati, I. (eds) Ambient Intelligence. AmI 2019. Lecture Notes in Computer Science(), vol 11912. Springer, Cham. https://doi.org/10.1007/978-3-030-34255-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-34255-5_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34254-8
Online ISBN: 978-3-030-34255-5
eBook Packages: Computer ScienceComputer Science (R0)