Abstract
In this paper we study the node failure identification problem in undirected graphs by means of Boolean Network Tomography. We argue that vertex connectivity plays a central role. We show tight bounds on the maximal identifiability in a particular class of graphs, the Line of Sight networks. We prove slightly weaker bounds on arbitrary networks. Finally we initiate the study of maximal identifiability in random networks. We focus on two models: the classical Erdős-Rényi model, and that of Random Regular graphs. The framework proposed in the paper allows a probabilistic analysis of the identifiability in random networks giving a tradeoff between the number of monitors to place and the maximal identifiability.
The first two authors kindly acknowledge the partial support by the MIUR under the grant “Dipartimenti di eccellenza 2018–2022” of the Department of Computer Science of Sapienza University. The research was also partly supported by a visiting fellowship of the University of Liverpool and the Networks Sciences & Technologies (NeST) initiative of the University of Liverpool (https://www.liverpool.ac.uk/network-science-technologies/).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Angluin, D., Valiant, L.G.: Fast probabilistic algorithms for Hamiltonian circuits and matchings. J. Comput. Syst. Sci. 18, 155–193 (1979)
Bartolini, N., He, T., Khamfroush, H.: Fundamental limits of failure identifiability by Boolean network tomography. In: INFOCOM 2017. IEEE (2017)
Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Eur. J. Comb. 1, 311–316 (1980)
Bollobás, B., Fenner, T.I., Frieze, A.M.: An algorithm for finding Hamilton paths and cycles in random graphs. Combinatorica 7, 327–341 (1987)
Bollobás, B.: Random Graphs. Cambridge Studies in Advanced Mathematics, vol. 73, 2nd edn. Cambridge University Press, Cambridge (2001)
Castro, R., Coates, M., Liang, G., Nowak, R., Yu, B.: Network tomography: recent developments. Stat. Sci. 19(3), 499–517 (2004)
Cheraghchi, M., Karbasi, A., Mohajer, S., Saligrama, V.: Graph-constrained group testing. IEEE Trans. Inf. Theory 58(1), 248–262 (2012)
Coates, M., Hero, A.O., Nowak, R., Yu, B.: Internet tomography. IEEE Signal Process. Mag. 19, 47–65 (2002)
Czumaj, A., Wang, X.: Communication problems in random line-of-sight ad-hoc radio networks. In: Hromkovič, J., Královič, R., Nunkesser, M., Widmayer, P. (eds.) SAGA 2007. LNCS, vol. 4665, pp. 70–81. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74871-7_7
Devroye, L., Farczadi, L.: Connectivity for line-of-sight networks in higher dimensions. Discrete Math. Theor. Comput. Sci. 15(2), 71–86 (2013)
Du, D.-M., Hwang, F.K.: Combinatorial Group Testing and Its Applications. World Scientific, Singapore (2000)
Duffield, N.G.: Simple network performance tomography. In: Proceedings of the 3rd ACM SIGCOMM Internet Measurement Conference, IMC 2003, Miami Beach, FL, USA, 27–29 October 2003, pp. 210–215. ACM (2003)
Frieze, A.M., Kleinberg, J.M., Ravi, R., Debany, W.: Line-of-sight networks. In: Bansal, N., Pruhs, K., Stein, C. (eds.) Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA, 7–9 January 2007, pp. 968–977. SIAM (2007)
Ghita, D., Karakus, C., Argyraki, K., Thiran, P.: Shifting network tomography toward a practical goal. In: Proceedings of the Seventh COnference on Emerging Networking EXperiments and Technologies, CoNEXT 2011, pp. 24:1–24:12. ACM, New York (2011)
Galesi, N., Ranjbar, F.: Tight bounds for maximal identifiability of failure nodes in boolean network tomography. In: 2018 IEEE 38th International Conference on Distributed Computing Systems, pp. 212–222. IEEE (2018)
Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)
Ma, L., He, T., Leung, K.K., Swami, A., Towsley, D.: Inferring link metrics from end-to-end path measurements: identifiability and monitor placement. IEEE/ACM Trans. Netw. 22(4), 1351–1368 (2014)
Ma, L., He, T., Swami, A., Towsley, D., Leung, K.K., Lowe, J.: Node failure localization via network tomography. In: Williamson, C., Akella, A., Taft, N. (eds.) Proceedings of the 2014 Internet Measurement Conference, IMC 2014, Vancouver, BC, Canada, 5–7 November 2014, pp. 195–208. ACM (2014)
Ma, L., He, T., Swami, A., Towsley, D., Leung, K.K.: Network capability in localizing node failures via end-to-end path measurements. IEEE/ACM Trans. Netw. 25(1), 434–450 (2017)
Ren, W., Dong, W.: Robust network tomography: K-identifiability and monitor assignment. In: 35th Annual IEEE International Conference on Computer Communications, INFOCOM 2016, San Francisco, CA, USA, 10–14 April 2016, pp. 1–9. IEEE (2016)
Sangha, P., Wong, P.W.H., Zito, M.: Independent sets in restricted line of sight networks. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS, vol. 10718, pp. 211–222. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72751-6_16
Sangha, P., Zito, M.: Finding large independent sets in line of sight networks. In: Gaur, D., Narayanaswamy, N.S. (eds.) CALDAM 2017. LNCS, vol. 10156, pp. 332–343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53007-9_29
Vardi, Y.: Network tomography: estimating source-destination traffic intensities from link data. J. Am. Stat. Assoc. 91(433), 365–377 (1996)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Galesi, N., Ranjbar, F., Zito, M. (2019). Vertex-Connectivity for Node Failure Identification in Boolean Network Tomography. In: Dressler, F., Scheideler, C. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2019. Lecture Notes in Computer Science(), vol 11931. Springer, Cham. https://doi.org/10.1007/978-3-030-34405-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-34405-4_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34404-7
Online ISBN: 978-3-030-34405-4
eBook Packages: Computer ScienceComputer Science (R0)