Skip to main content

Knowledge-Assisted Visualization and Guidance

  • Chapter
  • First Online:
Foundations of Data Visualization

Abstract

Visualization envisions to intertwine the strengths of humans and computers for effective interactive visual and analytic data analysis and exploration. To this end, humans’ tacit/implicit knowledge from prior experience is an important asset that can be leveraged by both human and computer to improve the visual and analytic exploration processes. However, acquiring, structuring, formalizing, storing, and utilizing implicit and explicit knowledge within the whole visualization process are provocative and widely-discussed research challenge. This chapter elaborates on (1) knowledge-assisted visualization, which aims to incorporate implicit and explicit knowledge as well as information-theoretical considerations into the visualization process to support users for decision making and (2) guidance, which is a computer-assisted process that aims to actively resolve a knowledge gap encountered by users during an interactive visualization session. This chapter ends with critical reflections about applicability, usability, and utility of the proposed knowledge enhanced visualization processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackoff, R.L.: From data to wisdom. J. Appl. Syst. Anal. 16(1), 3–9 (1989)

    Google Scholar 

  2. Amar, R., Stasko, J.: Knowledge precepts for design and evaluation of information visualizations. IEEE Trans. Vis. Comput. Graph. (TVCG) 11(4), 432–442 (2005). https://doi.org/10.1109/TVCG.2005.63

    Article  Google Scholar 

  3. Bodesinsky, P., Federico, P., Miksch, S.: Visual analysis of compliance with clinical guidelines. In: Proceedings of the 13th International Conference on Knowledge Management and Knowledge Technologies, i-Know ’13, pp. 12:1–12:8. ACM, New York, NY, USA (2013). https://doi.org/10.1145/2494188.2494202

  4. Carpendale, S., Chen, M., Evanko, D., Gehlenborg, N., Goerg, C., Hunter, L., Rowland, F., Storey, M.A., Strobelt, H.: Ontologies in biological data visualization. IEEE Comput. Graph. Appl. 34(2), 8–15 (2014)

    Google Scholar 

  5. Ceneda, D., Gschwandtner, T., May, T., Miksch, S., Schulz, H., Streit, M., Tominski, C.: Amending the Characterization of Guidance in Visual Analytics (2017). arXiv:1710.06615 [cs.HC]

  6. Ceneda, D., Gschwandtner, T., May, T., Miksch, S., Schulz Schulz, H., Streit, M., Tominski, C.: Characterizing guidance in visual analytics. IEEE Trans. Vis. Comput. Graph. (TVCG) 23(1), 111–120 (2017)

    Google Scholar 

  7. Ceneda, D., Gschwandtner, T., May, T., Miksch, S., Streit, M., Tominski, C.: Guidance or no guidance? a decision tree can help. In: Proceedings of the EuroVis Workshop on Visual Analytic (EuroVA), pp. 19–23. Eurographics Digital Library (2018). https://doi.org/10.2312/eurova.20181107

  8. Ceneda, D., Gschwandtner, T., Miksch, S.: A review of guidance approaches in visual data analysis: a multifocal perspective. Comput. Graph. Forum (CGF) 38(3), 861–879 (2019)

    Google Scholar 

  9. Ceneda, D., Gschwandtner, T., Miksch, S., Tominski, C.: Guided visual exploration of cyclical patterns in time-series. In: Proceedings of the IEEE Symposium on Visualization in Data Science (VDS). IEEE Computer Society (2018)

    Google Scholar 

  10. Chen, C.: Top 10 unsolved information visualization problems. IEEE Comput. Graph. Appl. Mag. 25(4), 12–16 (2005). https://doi.org/10.1109/MCG.2005.91

    Article  Google Scholar 

  11. Chen, M., Ebert, D., Hagen, H., Laramee, R., van Liere, R., Ma, K.L., Ribarsky, W., Scheuermann, G., Silver, D.: Data, information, and knowledge in visualization. IEEE Comput. Graph. Appl. Mag. 29(1), 12–19 (2009). https://doi.org/10.1109/MCG.2009.6

    Article  Google Scholar 

  12. Chen, M., Ebert, D.S.: An ontological framework for supporting the design and evaluation of visual analytics systems. Comput. Graph. Forum 36(3), 131–144 (2019)

    Google Scholar 

  13. Chen, M., Golan, A.: What may visualization processes optimize? IEEE Trans. Vis. Comput. Graph. (TVCG) 22(12), 2619–2632 (2016). https://doi.org/10.1109/TVCG.2015.2513410

    Article  Google Scholar 

  14. Chen, M., Jänicke, H.: An information-theoretic framework for visualization. IEEE Trans. Vis. Comput. Graph. 16(6), 1206–1215 (2010)

    Google Scholar 

  15. Chen, M., Trefethen, A., Banares-Alcantara, R., Jirotka, M., Coecke, B., Ertl, T., Schmidt, A.: From data analysis and visualization to causality discovery. IEEE Comput. 44(10), 84–87 (2011)

    Google Scholar 

  16. Collins, C., Andrienko, N., Schreck, T., Yang, J., Choo, J., Engelke, U., Jena, A., Dwyer, T.: Guidance in the human-machine analytics process. Vis. Inf. 2(3), 166–180 (2018)

    Google Scholar 

  17. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (2006)

    Google Scholar 

  18. Dix, A., Finlay, J., Abowd, G., Beale, R.: Human-Computer Interaction, 3rd edn. Pearson Education, London (2004)

    MATH  Google Scholar 

  19. Ellis, G. (ed.): Cognitive Biases in Visualizations. Springer, Berlin (2018)

    Google Scholar 

  20. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 17(3), 37 (1996)

    Google Scholar 

  21. Federico, P., Amor-Amorós, A., Miksch, S.: A nested workflow model for visual analytics design and validation. In: Proceedings of the Workshop on Beyond Time And Errors (BELIV), pp. 104–111. ACM, New York, NY, USA (2016). https://doi.org/10.1145/2993901.2993915

  22. Federico, P., Unger, J., Amor-Amorós, A., Sacchi, L., Klimov, D., Miksch, S.: Gnaeus: utilizing clinical guidelines for knowledge-assisted visualisation of EHR cohorts. In: E. Bertini, J.C. Roberts (eds.) Proceedings of the EuroVis Workshop on Visual Analytic (EuroVA). The Eurographics Association (2015). https://doi.org/10.2312/eurova.20151108

  23. Federico, P., Wagner, M., Rind, A., Amor-AmorĂłs, A., Miksch, S., Aigner, W.: The role of explicit knowledge: a conceptual model of knowledge-assisted visual analytics. In: Proceedings of IEEE Conference on Visual Analytics Science and Technology (VAST) (2017)

    Google Scholar 

  24. Flöring, S., Appelrath, H.J.: KnoVA: introducing a reference model for knowledge-based visual analytics. In: Proceedings of the International Conference on Imaging Theory and Applications and International Conference on Information Visualization Theory and Applications (IVAPP), pp. 230–235 (2011)

    Google Scholar 

  25. Gilson, O., Silva, N., Grant, P., Chen, M.: From web data to visualization via ontology mapping. Comput. Graph. Forum (CGF) 27(3), 959–966 (2008). https://doi.org/10.1111/j.1467-8659.2008.01230.x

    Article  Google Scholar 

  26. Gilson, O., Silva, N., Grant, P., Chen, M.: From web data to visualization via ontology mapping. Comput. Graph. Forum 27(3), 959–966 (2008)

    Google Scholar 

  27. Hand, D.J.: Intelligent data analysis: issues & opportunities. Intell. Data Anal. 2(1–4), 67–79 (1998). https://doi.org/10.1016/S1088-467X(99)80001-8

    Article  Google Scholar 

  28. Horvitz, E.: Principles of mixed-initiative user interfaces. In: Proceedings of the SIGCHI conference on Human Factors in Computing Systems, pp. 159–166. ACM (1999)

    Google Scholar 

  29. Jänicke, H., Böttinger, M., Mikolajewicz, U., Scheuermann, G.: Visual exploration of climate variability changes using wavelet analysis. IEEE Trans. Vis. Comput. Graph. 15(6), 1375–1382 (2009)

    Google Scholar 

  30. Kahneman, D.: Thinking, Fast and Slow Paperback. Penguin (2012)

    Google Scholar 

  31. Kappe, C.P., Böttinger, M., Leitte, H.: Exploring variability within ensembles of decadal climate predictions. IEEE Trans. Vis. Comput. Graph. 25(3), 1499–1512 (2019)

    Google Scholar 

  32. Keim, D., Kohlhammer, J., Ellis, G., Mansmann, F.: Mastering the Information Age: Solving problems with Visual Analytics. Eurographics (2010)

    Google Scholar 

  33. Khan, S., Kanturska, U., Waters, T., Eaton, J., Banares-Alcantara, R., M.Chen: Ontology-assisted provenance visualization for supporting enterprise search of engineering and business files. Adv. Eng. Inf. 30(2), 244–257 (2016)

    Google Scholar 

  34. Kijmongkolchai, N., Abdul-Rahman, A., Chen, M.: Empirically measuring soft knowledge in visualization. Comput. Graph. Forum 36(3), 73–85 (2017)

    Google Scholar 

  35. Kriglstein, S., Pohl, M., Smuc, M.: Pep Up Your Time Machine: Recommendations for the Design of Information Visualizations of Time-Dependent Data, pp. 203–225. Springer, New York (2014)

    Google Scholar 

  36. Mackinlay, J.: Automating the design of graphical presentations of relational information. ACM Trans. Graph. (TOG) 5(2), 110–141 (1986). https://doi.org/10.1145/22949.22950

    Article  Google Scholar 

  37. Mackinlay, J., Hanrahan, P., Stolte, C.: Show me: automatic presentation for visual analysis. IEEE Trans. Vis. Comput. Graph. (TVCG) 13(6), 1137–1144 (2007). https://doi.org/10.1109/TVCG.2007.70594

    Article  Google Scholar 

  38. Miksch, S., Aigner, W.: A matter of time: applying a data-users-tasks design triangle to visual analytics of time-oriented data. Comput. Graph. Spec. Sect. Vis. Anal. 38, 286–290 (2014). https://doi.org/10.1016/j.cag.2013.11.002

    Article  Google Scholar 

  39. Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. J. Vis. Lang. Comput. 6(2), 183–210 (1995). https://doi.org/10.1006/jvlc.1995.1010

    Article  Google Scholar 

  40. Nonaka, I., Takeuchi, H.: The knowledge-creating company. Harvard business review 85(7/8), 162 (2007)

    Google Scholar 

  41. Norman, D.A.: The Design of Everyday Things. Basic Books Inc, New York (2013)

    Google Scholar 

  42. Perner, P.: Intelligent data analysis in medicine-recent advances. Artif. Intell. Med. 37(1), 1–5 (2006). https://doi.org/10.1016/j.artmed.2005.10.003

    Article  Google Scholar 

  43. Pike, W.A., Stasko, J., Chang, R., O’Connell, T.A.: Inform. Vis. The science of interaction. 8(4), 263–274 (2009). https://doi.org/10.1057/ivs.2009.22

    Article  Google Scholar 

  44. Pohl, M.: Cognitive biases in visual analytics – a critical reflection. In: Ellis, G. (ed.) Cognitive Biases in Visualizations, pp. 177–184. Springer, Berlin (2018)

    Google Scholar 

  45. Preece, J., Sharp, H., Rogers, Y.: Interaction Design: Beyond Human-Computer Interaction, 4th edn. Wiley, New York (2015)

    Google Scholar 

  46. Rubrichi, S., Rognoni, C., Sacchi, L., Parimbelli, E., Napolitano, C., Mazzanti, A., Quaglini, S.: Graphical representation of life paths to better convey results of decision models to patients. Med. Decis. Mak. 35(3), 398–402 (2015). https://doi.org/10.1177/0272989X14565822

    Article  Google Scholar 

  47. Sacha, D., Kraus, M., Keim, D.A., Chen, M.: VIS4ML: an ontology for visual analytics assisted machine learning. IEEE Trans. Vis. Comput. Graph. 25(1), 385–395 (2019)

    Google Scholar 

  48. Sacha, D., Stoffel, A., Stoffel, F., Kwon, B.C., Ellis, G., Keim, D.A.: Knowledge generation model for visual analytics. IEEE Trans. Vis. Comput. Graph. 20(12), 1604–1613 (2014)

    Google Scholar 

  49. Schulz, H.J., Streit, M., May, T., Tominski, C.: Towards a characterization of guidance in visualization. In: Poster at IEEE Conference on Information Visualization (InfoVis) (2013)

    Google Scholar 

  50. Streeb, D., Chen, M., Keim, D.A.: The biases of thinking fast and thinking slow. In: Ellis, G. (ed.) Cognitive Biases in Visualizations, pp. 97–107. Springer, Berlin (2018)

    Google Scholar 

  51. Tam, G.K.L., Kothari, V., Chen, M.: An analysis of machine- and human-analytics in classification. IEEE Trans. Vis. Comput. Graph. 23(1), 71–80 (2017)

    Google Scholar 

  52. Thomas, J.J., Cook, K.A.: Illuminating the Path: The Research and Development Agenda for Visual Analytics. IEEE Computer Society (2005)

    Google Scholar 

  53. Trenberth, K.E.: The definition of el nino. Bull. Am. Meteorol. Soc. 78(12), 2771–2778 (1997)

    Google Scholar 

  54. Wagner, M.: Integrating explicit knowledge in the visual analytics process. Technical report, TU Wien, Ph.D. Thesis (2017)

    Google Scholar 

  55. Wagner, M., Rind, A., Thür, N., Aigner, W.: A knowledge-assisted visual malware analysis system: design, validation, and reflection of KAMAS. Comput. Secur. 67, 1–15 (2017). https://doi.org/10.1016/j.cose.2017.02.003

    Article  Google Scholar 

  56. Wagner, M., Slijepcevic, D., Horsak, B., Rind, A., Zeppelzauer, M., Aigner, W.: KAVAGait: Knowledge-assisted visual analytics for clinical gait analysis. IEEE Trans. Vis. Comput. Graph. (TVCG) 25(3), 1528–1542 (2018). https://doi.org/10.1109/TVCG.2017.2785271

    Article  Google Scholar 

  57. Wang, X., Jeong, D.H., Dou, W., Lee, S.W., et al.: Defining and applying knowledge conversion processes to a visual analytics system. Comput. Graph. 33(5), 616–623 (2009). https://doi.org/10.1016/j.cag.2009.06.004

    Article  Google Scholar 

  58. van Wijk, J.: Views on visualization. IEEE Trans. Vis. Comput. Graph. (TVCG) 12(4), 421–433 (2006). https://doi.org/10.1109/TVCG.2006.80

    Article  Google Scholar 

  59. Wongsuphasawat, K., Moritz, D., Anand, A., Mackinlay, J., Howe, B., Heer, J.: Voyager: exploratory analysis via faceted browsing of visualization recommendations. IEEE Trans. Vis. Comput. Graph. (TVCG) 22(1), 649–658 (2016). https://doi.org/10.1109/TVCG.2015.2467191

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Davide Ceneda, Theresia Gschwandtner, Thorsten May, Hans-Jörg Schulz, Marc Streit, Christian Tominski, and all participants of the WG group at the Dagstuhl Seminar for constructive and fruitful discussions and thank the reviewers for their invaluable feedback. This work was funded by the “Austrian Science Fund (FWF), grant P31419-N31”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Miksch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miksch, S., Leitte, H., Chen, M. (2020). Knowledge-Assisted Visualization and Guidance. In: Chen, M., Hauser, H., Rheingans, P., Scheuermann, G. (eds) Foundations of Data Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-34444-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34444-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34443-6

  • Online ISBN: 978-3-030-34444-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics