Skip to main content

Abstract

The needs of higher levels of automation in the industrial processes and manufacturing have led to the paradigm of robot co-worker. Aerial robots provide interesting advantages when compared to traditional ground robots and can contribute to factory automation due to their intrinsic flexibility and fast response. For instance, the upper part in factories are rather sparse and static whereas the floor of factories are often very dense and dynamic. This chapter presents the ARCOW project in which the University of Seville, FADA-CATEC and Airbus D&S joined efforts to develop and demonstrate how aerial robots collaborating with humans can be introduced in manufacturing processes. ARCOW is focused on two use-cases: light item logistics and localization of missing tools. This chapter describes the approaches, architectures and methods developed and validated in the different stages of EuRoC to accomplish this objective. The ARCOW system was extensively validated in the Airbus D&S Centro Bahía de Cádiz (CBC) factory in Spanish province of Cádiz and received the “Best drone-based solution” in the EU Drone Awards 2017.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://gazebosim.org.

  2. 2.

    http://wiki.ros.org/node_manager_fkie.

References

  1. Haddadin, S., Suppa, M., Fuchs, S., Bodenmüller, T., Albu-Schäffer, A., Hirzinger, G.: Towards the robotic co-worker. In: Cédric Pradalier, Siegwart, R., Gerhard, H., (Eds.) Robotics Research, pp. 261–282. Springer Berlin Heidelberg (2011)

    Google Scholar 

  2. Sauppé, A., Mutlu, B.: The social impact of a robot co-worker in industrial settings. In: Proceedings of 33rd ACM Conference on Human Factors in Computing Systems, CHI ’15, pp. 3613–3622 (2015)

    Google Scholar 

  3. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 29 (2007)

    Article  Google Scholar 

  4. Achtelik, M.W., Lynen, S., Weiss, S., Kneip, L., Chli, M., Siegwart, R.: Visual-inertial SLAM for a small helicopter in large outdoor environments. In: IEEE/RSJ IROS2012, vol. 10, pp. 2651–2652 (2012)

    Google Scholar 

  5. Weiss, S., Scaramuzza, D., Siegwart, R.: Monocular-SLAM-based navigation for autonomous micro helicopters in GPS-denied environments. J. Field Robot. 28:854–874 (2011)

    Article  Google Scholar 

  6. Honegger, D., Meier, L., Tanskanen, P., Pollefeys, M.: An open source and open hardware embedded metric optical flow CMOS camera for indoor and outdoor applications. In: IEEE ICRA2013, pp. 1736–1741 (2013)

    Google Scholar 

  7. Mebarki, R., Lippiello, V.: Image moments-based velocity estimation of UAVs in GPS denied environments. IEEE International Symposium on Safety, Security, and Rescue Robotics, pp. 1–6 (2014)

    Google Scholar 

  8. Kneip, L., Chli, M., Siegwart, R.Y.: Robust real-time visual odometry with a single camera and an IMU. In: Proceedings of the British Machine Vision Conference. BMVA Press (2011)

    Google Scholar 

  9. Geiger, A., Ziegler, J., Stiller, C.: Stereoscan: Dense 3d reconstruction in real-time. In: IEEE Intelligent Vehicles Symposium, pp. 963–968 (2011)

    Google Scholar 

  10. Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., Burgard, W.: An evaluation of the RGB-D SLAM system. In: IEEE ICRA2012, pp. 1691–1696 (2012)

    Google Scholar 

  11. Kerl, C., Sturm, J., Cremers, D.: Robust odometry estimation for RGB-D cameras. In: IEEE ICRA2013, pp. 3748–3754 (2013)

    Google Scholar 

  12. Pomerleau, F., Colas, F., Siegwart, R., Magnenat, S.: Comparing ICP variants on real-world data sets. Autonom. Robots, 133–148 (2013)

    Article  Google Scholar 

  13. Nuchter, A., Lingemann, K., Hertzberg, J.; Cached k-d tree search for ICP algorithms. In: Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007), pp. 419–426 (2007)

    Google Scholar 

  14. Marden, S., Guivant, J.: Improving the performance of ICP for real-time applications using an approximate nearest neighbor search. In: Australasian Conference on Robotics and Automation (2012)

    Google Scholar 

  15. Kümmerle, Rainer, Ruhnke, Michael, Steder, Bastian, Stachniss, Cyrill, Burgard, Wolfram: Autonomous robot navigation in highly populated pedestrian zones. J. Field Robot. 32, 09 (2014)

    Google Scholar 

  16. Lavalle, S.M.: Rapidly-exploring random trees: a new tool for path planning. Technical Report Computer Science Department, Iowa State University (TR 98–11), 05 1999

    Google Scholar 

  17. Jaillet, l., Juan, C., Siméon, T.: Transition-based RRT for path planning in continuous cost spaces. In: IEEE/RSJ IROS2008, pp. 2145–2150, 09 (2008)

    Google Scholar 

  18. Torres-Gonzalez, A., Martinez-De Dios, J.R., Ollero, A.: Efficient robot-sensor network distributed SEIF range-only SLAM. IEEE ICRA2014, pp. 1319–1326 (2014)

    Google Scholar 

  19. Torres-González, A., Dios, Jose Ramiro Martinez-de, Ollero, A.: Range-only SLAM for robot-sensor network cooperation. Autonom. Robots 42(3), 649–663 (2018)

    Article  Google Scholar 

  20. Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J., Omari, S., Achtelik, M.W., Siegwart, R.: The EuRoC micro aerial vehicle datasets. Int. J. Robotics Res. 35(10), 1157–1163 (2016)

    Article  Google Scholar 

  21. Perez-Grau, F.J., Ragel, R., Caballero, F., Viguria, A., Ollero, A.: Semi-autonomous teleoperation of UAVs in search and rescue scenarios. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1066–1074 (2017)

    Google Scholar 

  22. Perez-Grau, F.J., Caballero, F., Viguria, A., Ollero, A.: Multi-sensor three-dimensional monte carlo localization for long-term aerial robot navigation. Int. J. Advanc. Robotic Syst., 14(5) (2017)

    Article  Google Scholar 

  23. Torres-González, A., Martinez-de Dios, J.R., Ollero, A.: Range-only SLAM for robot-sensor network cooperation. Autonom. Robots, pp. 1–15 (2017)

    Article  Google Scholar 

  24. Thrun, Sebastian, Fox, Dieter, Burgard, Wolfram, Dellaert, Frank: Robust monte carlo localization for mobile robots. Artif. Intell. 128(1–2), 99–141 (2001)

    Article  Google Scholar 

  25. Paneque, J.I., Torres-González, A., Ramiro Martínez-de Dios, J., Ramón Astorga Ramírez, J., Ollero, A.: Autonomous localization of missing items with aerial robots in an aircraft factory. In: Iberian Robotics Conference, pp. 179–189. Springer, Cham (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Ramiro Martínez de-Dios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de-Dios, J.R.M. et al. (2020). GRVC-CATEC: Aerial Robot Co-worker in Plant Servicing (ARCOW). In: Caccavale, F., Ott, C., Winkler, B., Taylor, Z. (eds) Bringing Innovative Robotic Technologies from Research Labs to Industrial End-users. Springer Tracts in Advanced Robotics, vol 136. Springer, Cham. https://doi.org/10.1007/978-3-030-34507-5_9

Download citation

Publish with us

Policies and ethics