Abstract
We present a new generic construction of multi-client functional encryption (MCFE) for inner products from single-input functional inner-product encryption and standard pseudorandom functions. In spite of its simplicity, the new construction supports labels, achieves security in the standard model under adaptive corruptions, and can be instantiated from the plain DDH, LWE, and Paillier assumptions. Prior to our work, the only known constructions required discrete-log-based assumptions and the random-oracle model. Since our new scheme is not compatible with the compiler from Abdalla et al. (PKC 2019) that decentralizes the generation of the functional decryption keys, we also show how to modify the latter transformation to obtain a decentralized version of our scheme with similar features.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
All the functions inside the same set \(\mathcal {F}_\rho \) have the same domain and the same range.
- 2.
We could define a stronger security notion without this restriction. However, in this paper, as in the prior works on MCFE, we add this restriction. In particular, we allow the secret key for the slot i to decrypt ciphertexts for the slot i. We leave achieving stronger security as an interesting open problem.
- 3.
In this paper, our definitions do not allow for the encryption to be stateful.
References
Abdalla, M., Benhamouda, F., Gay, R.: From single-input to multi-client inner-product functional encryption. Cryptology ePrint Archive, Report 2019/487 (2019). https://eprint.iacr.org/2019/487
Abdalla, M., Benhamouda, F., Kohlweiss, M., Waldner, H.: Decentralizing inner-product functional encryption. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II. LNCS, vol. 11443, pp. 128–157. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_5
Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_33
Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional encryption for inner products: function-hiding realizations and constructions without pairings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 597–627. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_20
Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_21
Agrawal, S., Clear, M., Frieder, O., Garg, S., O’Neill, A., Thaler, J.: Ad hoc multi-input functional encryption. Cryptology ePrint Archive, Report 2019/356 (2019). https://eprint.iacr.org/2019/356
Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_12
Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_15
Badrinarayanan, S., Gupta, D., Jain, A., Sahai, A.: Multi-input functional encryption for unbounded arity functions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 27–51. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_2
Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 470–491. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_20
Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16
Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the private-key setting: stronger security from weaker assumptions. J. Cryptol. 31(2), 434–520 (2018). https://doi.org/10.1007/s00145-017-9261-0
Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized multi-client functional encryption for inner product. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 703–732. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_24
Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Multi-client functional encryption with repetition for inner product. Cryptology ePrint Archive, Report 2018/1021 (2018). http://eprint.iacr.org/2018/1021
Datta, P., Okamoto, T., Tomida, J.: Full-hiding (unbounded) multi-input inner product functional encryption from the k-linear assumption. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 245–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_9
Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_32
Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-friendly aggregation for the smart-grid. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 175–191. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22263-4_10
O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556 (2010). http://eprint.iacr.org/2010/556
Acknowledgments
This work was supported in part by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement 780108 (FENTEC), by the ERC Project aSCEND (H2020 639554), by the French Programme d’Investissement d’Avenir under national project RISQ P141580, and by the French FUI project ANBLIC. The third author was partially supported by a Google PhD Fellowship in Privacy and Security. Part of this work was done while the second author was at IBM Research, Yorktown Heights, USA, and the third author was at École normale supérieure, Paris, France.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 International Association for Cryptologic Research
About this paper
Cite this paper
Abdalla, M., Benhamouda, F., Gay, R. (2019). From Single-Input to Multi-client Inner-Product Functional Encryption. In: Galbraith, S., Moriai, S. (eds) Advances in Cryptology – ASIACRYPT 2019. ASIACRYPT 2019. Lecture Notes in Computer Science(), vol 11923. Springer, Cham. https://doi.org/10.1007/978-3-030-34618-8_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-34618-8_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34617-1
Online ISBN: 978-3-030-34618-8
eBook Packages: Computer ScienceComputer Science (R0)