Skip to main content

Shorter QA-NIZK and SPS with Tighter Security

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2019 (ASIACRYPT 2019)

Abstract

Quasi-adaptive non-interactive zero-knowledge proof (QA-NIZK) systems and structure-preserving signature (SPS) schemes are two powerful tools for constructing practical pairing-based cryptographic schemes. Their efficiency directly affects the efficiency of the derived advanced protocols.

We construct more efficient QA-NIZK and SPS schemes with tight security reductions. Our QA-NIZK scheme is the first one that achieves both tight simulation soundness and constant proof size (in terms of number of group elements) at the same time, while the recent scheme from Abe et al. (ASIACRYPT 2018) achieved tight security with proof size linearly depending on the size of the language and the witness. Assuming the hardness of the Symmetric eXternal Diffie-Hellman (SXDH) problem, our scheme contains only 14 elements in the proof and remains independent of the size of the language and the witness. Moreover, our scheme has tighter simulation soundness than the previous schemes.

Technically, we refine and extend a partitioning technique from a recent SPS scheme (Gay et al., EUROCRYPT 2018). Furthermore, we improve the efficiency of the tightly secure SPS schemes by using a relaxation of NIZK proof system for OR languages, called designated-prover NIZK system. Under the SXDH assumption, our SPS scheme contains 11 group elements in the signature, which is shortest among the tight schemes and is the same as an early non-tight scheme (Abe et al., ASIACRYPT 2012). Compared to the shortest known non-tight scheme (Jutla and Roy, PKC 2017), our scheme achieves tight security at the cost of 5 additional elements.

All the schemes in this paper are proven secure based on the Matrix Diffie-Hellman assumptions (Escala et al., CRYPTO 2013). These are a class of assumptions which include the well-known SXDH and DLIN assumptions and provide clean algebraic insights to our constructions. To the best of our knowledge, our schemes achieve the best efficiency among schemes with the same functionality and security properties. This naturally leads to improvement of the efficiency of cryptosystems based on simulation-sound QA-NIZK and SPS.

J. Pan—Research was conducted at KIT, Germany under the DFG grant HO 4534/4-1.

Yuyu Wang—Research was conducted at Tokyo Institute of Technology. A part of this work was supported by the Sichuan Science and Technology Program under Grant 2017GZDZX0002 and 2018GZDZX0006, Input Output Cryptocurrency Collaborative Research Chair funded by IOHK, JST OPERA JPMJOP1612, JST CREST JPMJCR14D6, JSPS KAKENHI JP16H01705, JP17H01695.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We only count numbers of group elements.

  2. 2.

    We follow the implicit notation of a group element. \([\cdot ]_s\) (\(s \in \{1,2,T\}\)) denotes the entry-wise exponentiation in \(\mathbb {G}_s\).

  3. 3.

    We note that the tight affine MAC in [29] can also be used to construct a DV-QA-NIZK and a QA-NIZK with tight unbounded simulation soundness. Their efficiency is slightly better than those in [18].

  4. 4.

    In [5], the defined security is this weak version. However, it is not sufficient for constructing a CCA2 secure encryption scheme, since it does not prevent an adversary from forging a new ciphertext for a challenge message and sending that it as a decryption query.

References

  1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof systems: new constructions and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 69–100. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_3

    Chapter  Google Scholar 

  2. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Constant-size structure-preserving signatures: generic constructions and simple assumptions. J. Cryptol. 29(4), 833–878 (2016)

    Article  MathSciNet  Google Scholar 

  3. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. J. Cryptol. 29(2), 363–421 (2016)

    Article  MathSciNet  Google Scholar 

  4. Abe, M., Hofheinz, D., Nishimaki, R., Ohkubo, M., Pan, J.: Compact structure-preserving signatures with almost tight security. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 548–580. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_19

    Chapter  Google Scholar 

  5. Abe, M., Jutla, C.S., Ohkubo, M., Roy, A.: Improved (Almost) tightly-secure simulation-sound QA-NIZK with applications. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 627–656. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_21

    Chapter  Google Scholar 

  6. Abe, M., Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure simulation-sound QA-NIZK with applications. IACR Cryptology ePrint Archive 2018/849 (2018)

    Google Scholar 

  7. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and noninteractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 356–374. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_20

    Chapter  Google Scholar 

  8. Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J.: Tightly-secure signatures from chameleon hash functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 256–279. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_12

    Chapter  Google Scholar 

  9. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_23

    Chapter  Google Scholar 

  10. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In: 20th ACM STOC, pp. 103–112. ACM Press, May 1988

    Google Scholar 

  11. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  12. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_20

    Chapter  Google Scholar 

  13. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_25

    Chapter  Google Scholar 

  14. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_4

    Chapter  Google Scholar 

  15. Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 630–649. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_36

    Chapter  Google Scholar 

  16. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_8

    Chapter  Google Scholar 

  17. Fischlin, M., Libert, B., Manulis, M.: Non-interactive and re-usable universally composable string commitments with adaptive security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 468–485. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_25

    Chapter  Google Scholar 

  18. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_1

    Chapter  Google Scholar 

  19. Gay, R., Hofheinz, D., Kohl, L.: Kurosawa-Desmedt meets tight security. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 133–160. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_5

    Chapter  Google Scholar 

  20. Gay, R., Hofheinz, D., Kohl, L., Pan, J.: More efficient (almost) tightly secure structure-preserving signatures. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 230–258. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_8

    Chapter  Google Scholar 

  21. Groth, J.: Fully anonymous group signatures without random oracles. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_10

    Chapter  Google Scholar 

  22. Groth, J., Lu, S.: A non-interactive shuffle with pairing based verifiability. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 51–67. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_4

    Chapter  Google Scholar 

  23. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for non-interactive zero-knowledge. J. ACM 59(3), 11:1–11:35 (2012). https://doi.org/10.1145/2220357.2220358

    Article  MathSciNet  Google Scholar 

  24. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24

    Chapter  Google Scholar 

  25. Hartung, G., Hoffmann, M., Nagel, M., Rupp, A.: BBA+: improving the security and applicability of privacy-preserving point collection. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1925–1942. ACM Press (2017)

    Google Scholar 

  26. Hofheinz, D.: Algebraic partitioning: fully compact and (almost) tightly secure cryptography. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 251–281. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9_11

    Chapter  MATH  Google Scholar 

  27. Hofheinz, D.: Adaptive partitioning. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 489–518. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_17

    Chapter  Google Scholar 

  28. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_35

    Chapter  Google Scholar 

  29. Hofheinz, D., Jia, D., Pan, J.: Identity-based encryption tightly secure under chosen-ciphertext attacks. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 190–220. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_7

    Chapter  Google Scholar 

  30. Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Proceedings of the Algorithmic Number Theory, 4th International Symposium, ANTS-IV, Leiden, The Netherlands, 2–7 July 2000, pp. 385–394 (2000)

    Google Scholar 

  31. Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure structure-preserving signatures. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 123–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_5

    Chapter  Google Scholar 

  32. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 1–20. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_1

    Chapter  Google Scholar 

  33. Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_17

    Chapter  Google Scholar 

  34. Jutla, C.S., Roy, A.: Improved structure preserving signatures under standard bilinear assumptions. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 183–209. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_7

    Chapter  Google Scholar 

  35. Jutla, C.S., Roy, A.: Smooth NIZK arguments. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 235–262. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_9

    Chapter  Google Scholar 

  36. Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assumptions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 275–295. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_14

    Chapter  Google Scholar 

  37. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 101–128. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_4

    Chapter  Google Scholar 

  38. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability: simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_29

    Chapter  Google Scholar 

  39. Libert, B., Peters, T., Joye, M., Yung, M.: Compactly hiding linear spans. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 681–707. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_28

    Chapter  Google Scholar 

  40. Libert, B., Peters, T., Yung, M.: Short group signatures via structure-preserving signatures: standard model security from simple assumptions. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 296–316. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_15

    Chapter  Google Scholar 

  41. Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 729–758. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_27

    Chapter  Google Scholar 

  42. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May 1990

    Google Scholar 

  43. Ràfols, C.: Stretching Groth-Sahai: NIZK proofs of partial satisfiability. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 247–276. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_10

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abe, M., Jutla, C.S., Ohkubo, M., Pan, J., Roy, A., Wang, Y. (2019). Shorter QA-NIZK and SPS with Tighter Security. In: Galbraith, S., Moriai, S. (eds) Advances in Cryptology – ASIACRYPT 2019. ASIACRYPT 2019. Lecture Notes in Computer Science(), vol 11923. Springer, Cham. https://doi.org/10.1007/978-3-030-34618-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34618-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34617-1

  • Online ISBN: 978-3-030-34618-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics