Skip to main content

Leakage Resilience of the Duplex Construction

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2019 (ASIACRYPT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11923))

Abstract

Side-channel attacks, especially differential power analysis (DPA), pose a serious threat to cryptographic implementations deployed in a malicious environment. One way to counter side-channel attacks is to design cryptographic schemes to withstand them, an area that is covered amongst others by leakage resilient cryptography. So far, however, leakage resilient cryptography has predominantly focused on block cipher based designs, and insights in permutation based leakage resilient cryptography are scarce. In this work, we consider leakage resilience of the keyed duplex construction: we present a model for leakage resilient duplexing, derive a fine-grained bound on the security of the keyed duplex in said model, and map it to ideas of Taha and Schaumont (HOST 2014) and Dobraunig et al. (ToSC 2017) in order to use the duplex in a leakage resilient manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Daemen et al. [15], the keys need not be mutually independent, but omitting this conditions will give various tricky corner cases in the analysis of leakage resilience.

References

  1. Andreeva, E., Daemen, J., Mennink, B., Van Assche, G.: Security of keyed sponge constructions using a modular proof approach. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 364–384. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5_18

    Chapter  Google Scholar 

  2. Barwell, G., Martin, D.P., Oswald, E., Stam, M.: Authenticated encryption in the face of protocol and side channel leakage. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 693–723. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_24

    Chapter  MATH  Google Scholar 

  3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) CCS 1993, pp. 62–73. ACM (1993)

    Google Scholar 

  4. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_25

    Chapter  Google Scholar 

  5. Berti, F., Koeune, F., Pereira, O., Peters, T., Standaert, F.X.: Leakage-Resilient and Misuse-Resistant Authenticated Encryption. Cryptology ePrint Archive, Report 2016/996 (2016)

    Google Scholar 

  6. Berti, F., Pereira, O., Peters, T., Standaert, F.X.: On leakage-resilient authenticated encryption with decryption leakages. IACR Trans. Symmetric Cryptol. 2017(3), 271–293 (2017)

    Google Scholar 

  7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In: Ecrypt Hash Workshop 2007, May 2007

    Google Scholar 

  8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge: single-pass authenticated encryption and other applications. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28496-0_19

    Chapter  Google Scholar 

  9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference, January 2011

    Google Scholar 

  10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the security of the keyed sponge construction. In: Symmetric Key Encryption Workshop, February 2011

    Google Scholar 

  11. Bloem, R., Gross, H., Iusupov, R., Könighofer, B., Mangard, S., Winter, J.: Formal verification of masked hardware implementations in the presence of glitches. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 321–353. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_11

    Chapter  MATH  Google Scholar 

  12. Chang, D., Dworkin, M., Hong, S., Kelsey, J., Nandi, M.: A keyed sponge construction with pseudorandomness in the standard model. In: NIST SHA-3 Workshop, March 2012

    Google Scholar 

  13. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener [39], pp. 398–412

    Chapter  Google Scholar 

  14. Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence of hardware countermeasures. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 252–263. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8_20

    Chapter  MATH  Google Scholar 

  15. Daemen, J., Mennink, B., Van Assche, G.: Full-state keyed duplex with built-in multi-user support. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 606–637. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_21

    Chapter  MATH  Google Scholar 

  16. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP - towards side-channel secure authenticated encryption. IACR Trans. Symmetric Cryptol. 2017(1), 80–105 (2017)

    Google Scholar 

  17. Dodis, Y., Pietrzak, K.: Leakage-resilient pseudorandom functions and side-channel attacks on feistel networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 21–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_2

    Chapter  Google Scholar 

  18. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS 2008, pp. 293–302. IEEE Computer Society (2008)

    Google Scholar 

  19. Faust, S., Pietrzak, K., Schipper, J.: Practical leakage-resilient symmetric cryptography. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 213–232. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_13

    Chapter  Google Scholar 

  20. FIPS 202: SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions, August 2015

    Google Scholar 

  21. Gaži, P., Pietrzak, K., Tessaro, S.: The exact PRF security of truncation: tight bounds for keyed sponges and truncated CBC. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 368–387. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_18

    Chapter  Google Scholar 

  22. Goubin, L., Patarin, J.: DES and differential power analysis the “duplication” method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5_15

    Chapter  MATH  Google Scholar 

  23. Guo, C., Pereira, O., Peters, T., Standaert, F.X.: Towards Lightweight Side-Channel Security and the Leakage-Resilience of the Duplex Sponge. Cryptology ePrint Archive, Report 2019/193 (2019)

    Google Scholar 

  24. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

    Article  MathSciNet  Google Scholar 

  25. Hsiao, C.-Y., Lu, C.-J., Reyzin, L.: Conditional computational entropy, or toward separating pseudoentropy from compressibility. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 169–186. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_10

    Chapter  Google Scholar 

  26. Jovanovic, P., Luykx, A., Mennink, B.: Beyond 2c/2 security in sponge-based authenticated encryption modes. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 85–104. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_5

    Chapter  MATH  Google Scholar 

  27. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

    Chapter  Google Scholar 

  28. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener [39], pp. 388–397

    Chapter  Google Scholar 

  29. Medwed, M., Standaert, F.-X., Großschädl, J., Regazzoni, F.: Fresh re-keying: security against side-channel and fault attacks for low-cost devices. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 279–296. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12678-9_17

    Chapter  Google Scholar 

  30. Mennink, B., Reyhanitabar, R., Vizár, D.: Security of full-state keyed sponge and duplex: applications to authenticated encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 465–489. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_19

    Chapter  Google Scholar 

  31. Naito, Y., Yasuda, K.: New bounds for keyed sponges with extendable output: independence between capacity and message length. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 3–22. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_1

    Chapter  Google Scholar 

  32. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.1007/11935308_38

    Chapter  MATH  Google Scholar 

  33. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear functions in the presence of glitches. J. Cryptol. 24(2), 292–321 (2011)

    Article  MathSciNet  Google Scholar 

  34. Pereira, O., Standaert, F.X., Vivek, S.: Leakage-resilient authentication and encryption from symmetric cryptographic primitives. In: Ray, I., Li, N., Kruegel, C. (eds.) CCS 2015, pp. 96–108. ACM (2015)

    Google Scholar 

  35. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_27

    Chapter  Google Scholar 

  36. Standaert, F.-X., Pereira, O., Yu, Y.: Leakage-resilient symmetric cryptography under empirically verifiable assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 335–352. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_19

    Chapter  Google Scholar 

  37. Standaert, F.X., Pereira, O., Yu, Y., Quisquater, J.J., Yung, M., Oswald, E.: Leakage resilient cryptography in practice. In: Sadeghi, A.R., Naccache, D. (eds.) Towards Hardware-Intrinsic Security - Foundations and Practice. ISC, pp. 99–134. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14452-3_5

    Chapter  Google Scholar 

  38. Taha, M.M.I., Schaumont, P.: Side-channel countermeasure for SHA-3 at almost-zero area overhead. In: HOST 2014, pp. 93–96. IEEE Computer Society (2014)

    Google Scholar 

  39. Wiener, M.J. (ed.): CRYPTO 1999. LNCS, vol. 1666. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1

    Book  MATH  Google Scholar 

  40. Yu, Y., Standaert, F.-X.: Practical leakage-resilient pseudorandom objects with minimum public randomness. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 223–238. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36095-4_15

    Chapter  Google Scholar 

  41. Yu, Y., Standaert, F.X., Pereira, O., Yung, M.: Practical leakage-resilient pseudorandom generators. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) CCS 2010, pp. 141–151. ACM (2010)

    Google Scholar 

Download references

Acknowledgments

We thank the ISAP team, the ESCADA team, and the authors of [23] for fruitful discussions. Christoph Dobraunig is supported by the Austrian Science Fund (FWF): J 4277-N38. Bart Mennink is supported by a postdoctoral fellowship from the Netherlands Organisation for Scientific Research (NWO) under Veni grant 016.Veni.173.017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Dobraunig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dobraunig, C., Mennink, B. (2019). Leakage Resilience of the Duplex Construction. In: Galbraith, S., Moriai, S. (eds) Advances in Cryptology – ASIACRYPT 2019. ASIACRYPT 2019. Lecture Notes in Computer Science(), vol 11923. Springer, Cham. https://doi.org/10.1007/978-3-030-34618-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34618-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34617-1

  • Online ISBN: 978-3-030-34618-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics