Skip to main content

Cross-Domain Recommendation System Based on Tensor Decomposition for Cybersecurity Data Analytics

  • Conference paper
  • First Online:
Science of Cyber Security (SciSec 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11933))

Included in the following conference series:

  • 925 Accesses

Abstract

In the context of personalization e-commerce cyberspace based on massive data, the traditional single-domain recommendation algorithm is difficult to adapt to cross-domain information recommendation service. Collaborative filtering is a simple and common recommendation algorithm, but when the target domain is very sparse, the performance of collaborative filtering algorithm will seriously degrade. Cross domain recommendation is an effective way to solve this problem because it is made by means of the auxiliary data domain associated with the target data domain. Most of the existing cross-domain recommendation models are based on two-dimensional rating matrix, and much other dimension information is lost, which leads to a decrease in recommended accuracy. In this paper, we propose a cross-domain recommendation method based on tensor decomposition, which can reduce the sparseness of data and improve the diversity and accuracy. It extracts the scoring patterns in different fields to fill the vacancy value in the target domain by transfer learning method. Many experiments on three public real data sets show that the proposed model’s recommendation accuracy is superior to some of the most advanced recommendation models. It can be applied to large-scale cross-domain information recommendation service and cybersecurity data analytics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, Y., Yin, G., Cai, Z., et al.: A trust-based probabilistic recommendation model for social networks. J. Netw. Comput. Appl. 55, 59–67 (2015)

    Article  Google Scholar 

  2. Liu, H., Xia, F., Chen, Z., et al.: TruCom: exploiting domain-specific trust networks for multicategory item recommendation. IEEE Syst. J. 11(1), 295–304 (2015)

    Article  Google Scholar 

  3. Qiu, T., Chen, G., Zhang, Z.K., et al.: An item-oriented recommendation algorithm on cold-start problem. EPL (Europhys. Lett.) 95(5), 58–63 (2011)

    Article  Google Scholar 

  4. Zhou, K., Yang, S.H., Zha, H.: Functional matrix factorizations for cold-start recommendation. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 315–324. ACM (2011)

    Google Scholar 

  5. Bobadilla, J.S., Ortega, F., Hernando, A., et al.: A collaborative filtering approach to mitigate the new user cold start problem. Knowl. Based Syst. 26, 225–238 (2012)

    Article  Google Scholar 

  6. Bobadilla, J., Ortega, F., Hernando, A., et al.: Recommender systems survey. Knowl. Based Syst. 46, 109–132 (2013)

    Article  Google Scholar 

  7. Abel, F., Herder, E., Houben, G.J., et al.: Cross-system user modeling and personalization on the social web. In: User Modeling and User-Adapted Interaction, pp. 1–41 (2013)

    Google Scholar 

  8. Robillard, M.P., Maalej, W., Walker, R.J., Zimmermann, T. (eds.): Recommendation Systems in Software Engineering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-45135-5

    Book  Google Scholar 

  9. Cantador, I., Cremonesi, P.: Tutorial on cross-domain recommender systems. In: Proceedings of the 8th ACM Conference on Recommender Systems, pp. 401–402. ACM (2014)

    Google Scholar 

  10. Li, B., Yang, Q., Xue, X.: Can movies and books collaborate? Cross-domain collaborative filtering for sparsity reduction. In: IJCAI 2009, vol. 9, pp. 2052–2057 (2009)

    Google Scholar 

  11. Kumar, A., Kumar, N., Hussain, M., et al.: Semantic clustering-based cross-domain recommendation. In: 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 137–141. IEEE (2014)

    Google Scholar 

  12. Tang, J., Wu, S., Sun, J., et al.: Cross-domain collaboration recommendation. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1285–1293. ACM (2012)

    Google Scholar 

  13. Karatzoglou, A., Amatriain, X., Baltrunas, L., et al.: Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 79–86. ACM (2010)

    Google Scholar 

  14. Enrich, M., Braunhofer, M., Ricci, F.: Cold-start management with cross-domain collaborative filtering and tags. In: Huemer, C., Lops, P. (eds.) EC-Web 2013. LNBIP, vol. 152, pp. 101–112. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39878-0_10

    Chapter  Google Scholar 

  15. Li, B., Yang, Q., Xue, X.: Transfer learning for collaborative filtering via a rating-matrix generative model. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 617–624. ACM (2009)

    Google Scholar 

  16. Shi, Y., Larson, M., Hanjalic, A.: Tags as bridges between domains: improving recommendation with tag-induced cross-domain collaborative filtering. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 305–316. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22362-4_26

    Chapter  Google Scholar 

  17. Gao, S., Luo, H., Chen, D., Li, S., Gallinari, P., Guo, J.: Cross-domain recommendation via cluster-level latent factor model. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part II. LNCS (LNAI), vol. 8189, pp. 161–176. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40991-2_11

    Chapter  Google Scholar 

  18. Hu, L., Cao, J., Xu, G., et al.: Personalized recommendation via cross-domain triadic factorization. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 595–606. ACM (2013)

    Google Scholar 

  19. Iwata, T., Koh, T.: Cross-domain recommendation without shared users or items by sharing latent vector distributions. In: Artificial Intelligence and Statistics, pp. 379–387 (2015)

    Google Scholar 

  20. Fernández-Tobías, I.: Matrix factorization models for cross-domain recommendation: Addressing the cold start in collaborative filtering (2017)

    Google Scholar 

  21. Symeonidis, P., Zioupos, A.: Matrix and Tensor Factorization Techniques for Recommender Systems, pp. 3–102. Springer Briefs in Computer Science. Springer, Cham (2016)

    Book  Google Scholar 

  22. Cantador, I., Fernández-Tobías, I., Berkovsky, S., Cremonesi, P.: Cross-domain recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 919–959. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6_27

    Chapter  Google Scholar 

  23. Cichocki, A., Zdunek, R., Phan, A.H., et al.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation. Wiley, Chichester (2009)

    Book  Google Scholar 

  24. [EB/OL] (2019). http://files.grouplens.org/datasets/movielens/ml-latest.zip

  25. [EB/OL] (2019). http://www2.informatik.uni-freiburg.de/~cziegler/BX/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongli Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Wang, J., Gao, J., Hu, S., Sun, H., Wang, Y. (2019). Cross-Domain Recommendation System Based on Tensor Decomposition for Cybersecurity Data Analytics. In: Liu, F., Xu, J., Xu, S., Yung, M. (eds) Science of Cyber Security. SciSec 2019. Lecture Notes in Computer Science(), vol 11933. Springer, Cham. https://doi.org/10.1007/978-3-030-34637-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34637-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34636-2

  • Online ISBN: 978-3-030-34637-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics