Abstract
In the context of personalization e-commerce cyberspace based on massive data, the traditional single-domain recommendation algorithm is difficult to adapt to cross-domain information recommendation service. Collaborative filtering is a simple and common recommendation algorithm, but when the target domain is very sparse, the performance of collaborative filtering algorithm will seriously degrade. Cross domain recommendation is an effective way to solve this problem because it is made by means of the auxiliary data domain associated with the target data domain. Most of the existing cross-domain recommendation models are based on two-dimensional rating matrix, and much other dimension information is lost, which leads to a decrease in recommended accuracy. In this paper, we propose a cross-domain recommendation method based on tensor decomposition, which can reduce the sparseness of data and improve the diversity and accuracy. It extracts the scoring patterns in different fields to fill the vacancy value in the target domain by transfer learning method. Many experiments on three public real data sets show that the proposed model’s recommendation accuracy is superior to some of the most advanced recommendation models. It can be applied to large-scale cross-domain information recommendation service and cybersecurity data analytics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, Y., Yin, G., Cai, Z., et al.: A trust-based probabilistic recommendation model for social networks. J. Netw. Comput. Appl. 55, 59–67 (2015)
Liu, H., Xia, F., Chen, Z., et al.: TruCom: exploiting domain-specific trust networks for multicategory item recommendation. IEEE Syst. J. 11(1), 295–304 (2015)
Qiu, T., Chen, G., Zhang, Z.K., et al.: An item-oriented recommendation algorithm on cold-start problem. EPL (Europhys. Lett.) 95(5), 58–63 (2011)
Zhou, K., Yang, S.H., Zha, H.: Functional matrix factorizations for cold-start recommendation. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 315–324. ACM (2011)
Bobadilla, J.S., Ortega, F., Hernando, A., et al.: A collaborative filtering approach to mitigate the new user cold start problem. Knowl. Based Syst. 26, 225–238 (2012)
Bobadilla, J., Ortega, F., Hernando, A., et al.: Recommender systems survey. Knowl. Based Syst. 46, 109–132 (2013)
Abel, F., Herder, E., Houben, G.J., et al.: Cross-system user modeling and personalization on the social web. In: User Modeling and User-Adapted Interaction, pp. 1–41 (2013)
Robillard, M.P., Maalej, W., Walker, R.J., Zimmermann, T. (eds.): Recommendation Systems in Software Engineering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-45135-5
Cantador, I., Cremonesi, P.: Tutorial on cross-domain recommender systems. In: Proceedings of the 8th ACM Conference on Recommender Systems, pp. 401–402. ACM (2014)
Li, B., Yang, Q., Xue, X.: Can movies and books collaborate? Cross-domain collaborative filtering for sparsity reduction. In: IJCAI 2009, vol. 9, pp. 2052–2057 (2009)
Kumar, A., Kumar, N., Hussain, M., et al.: Semantic clustering-based cross-domain recommendation. In: 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 137–141. IEEE (2014)
Tang, J., Wu, S., Sun, J., et al.: Cross-domain collaboration recommendation. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1285–1293. ACM (2012)
Karatzoglou, A., Amatriain, X., Baltrunas, L., et al.: Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 79–86. ACM (2010)
Enrich, M., Braunhofer, M., Ricci, F.: Cold-start management with cross-domain collaborative filtering and tags. In: Huemer, C., Lops, P. (eds.) EC-Web 2013. LNBIP, vol. 152, pp. 101–112. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39878-0_10
Li, B., Yang, Q., Xue, X.: Transfer learning for collaborative filtering via a rating-matrix generative model. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 617–624. ACM (2009)
Shi, Y., Larson, M., Hanjalic, A.: Tags as bridges between domains: improving recommendation with tag-induced cross-domain collaborative filtering. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 305–316. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22362-4_26
Gao, S., Luo, H., Chen, D., Li, S., Gallinari, P., Guo, J.: Cross-domain recommendation via cluster-level latent factor model. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part II. LNCS (LNAI), vol. 8189, pp. 161–176. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40991-2_11
Hu, L., Cao, J., Xu, G., et al.: Personalized recommendation via cross-domain triadic factorization. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 595–606. ACM (2013)
Iwata, T., Koh, T.: Cross-domain recommendation without shared users or items by sharing latent vector distributions. In: Artificial Intelligence and Statistics, pp. 379–387 (2015)
Fernández-TobÃas, I.: Matrix factorization models for cross-domain recommendation: Addressing the cold start in collaborative filtering (2017)
Symeonidis, P., Zioupos, A.: Matrix and Tensor Factorization Techniques for Recommender Systems, pp. 3–102. Springer Briefs in Computer Science. Springer, Cham (2016)
Cantador, I., Fernández-TobÃas, I., Berkovsky, S., Cremonesi, P.: Cross-domain recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 919–959. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6_27
Cichocki, A., Zdunek, R., Phan, A.H., et al.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation. Wiley, Chichester (2009)
[EB/OL] (2019). http://files.grouplens.org/datasets/movielens/ml-latest.zip
[EB/OL] (2019). http://www2.informatik.uni-freiburg.de/~cziegler/BX/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Y., Wang, J., Gao, J., Hu, S., Sun, H., Wang, Y. (2019). Cross-Domain Recommendation System Based on Tensor Decomposition for Cybersecurity Data Analytics. In: Liu, F., Xu, J., Xu, S., Yung, M. (eds) Science of Cyber Security. SciSec 2019. Lecture Notes in Computer Science(), vol 11933. Springer, Cham. https://doi.org/10.1007/978-3-030-34637-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-34637-9_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34636-2
Online ISBN: 978-3-030-34637-9
eBook Packages: Computer ScienceComputer Science (R0)