Skip to main content

Application of DeepWalk Based on Hyperbolic Coordinates on Unsupervised Clustering

  • Conference paper
  • First Online:
Science of Cyber Security (SciSec 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11933))

Included in the following conference series:

  • 804 Accesses

Abstract

In the real world, various information can be represented by graph structure data. For example, interpersonal relationships and protein structure. In recent years, with the development of artificial intelligence, graph embedding has become a popular method of network analysis. It can reduce the dimension of network structure data, so that network structure data can be applied to various machine learning and deep learning tasks. At the same time, many studies of network geometry show that the hidden metric of many complex networks is hyperbolic. After hyperbolic space mapping, nodes in the original network data structure can be represented by hyperbolic coordinates. Hyperbolic coordinates contain information about the popularity and similarity of nodes which is very important for unsupervised clustering tasks. However, the random walk strategy in the native DeepWalk algorithm cannot effectively extract this information. So we propose an improvement of the DeepWalk algorithm based on hyperbolic coordinates and achieved good results on many datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keogh, E., Mueen, A.: Curse of dimensionality. In: Gass, S.I., Fu, M.C. (eds.) Encyclopedia of Machine Learning, pp. 257–258. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-1153-7_200110

    Chapter  Google Scholar 

  2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  3. Cambria, E., White, B.: Jumping NLP curves: a review of natural language processing research. IEEE Comput. Intell. Mag. 9(2), 48–57 (2014)

    Article  Google Scholar 

  4. Cai, H., Zheng, V.W., Chang, K.: A comprehensive survey of graph embedding: problems, techniques and applications. IEEE Trans. Knowl. Data Eng. 30, 1616–1637 (2018)

    Article  Google Scholar 

  5. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey. Knowl. Based Syst. 151, 78–94 (2018)

    Article  Google Scholar 

  6. Grbovic, M., et al.: E-commerce in your inbox: product recommendations at scale. In: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1809–1818. ACM, August 2015

    Google Scholar 

  7. Barkan, O., Koenigstein, N.: Item2Vec: neural item embedding for collaborative filtering. In: 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE, September 2016

    Google Scholar 

  8. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM, August 2016

    Google Scholar 

  9. Ding, W., Lin, C., Ishwar, P.: Node embedding via word embedding for network community discovery. IEEE Trans. Signal Inf. Process. Netw. 3(3), 539–552 (2017)

    Article  MathSciNet  Google Scholar 

  10. Kooti, F., Grbovic, M., Aiello, L.M., Bax, E., Lerman, K.: iPhone’s digital marketplace: characterizing the big spenders. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 13–21. ACM, February 2017

    Google Scholar 

  11. Chamberlain, B.P., Cardoso, A., Liu, C.H., Pagliari, R., Deisenroth, M.P.: Customer lifetime value prediction using embeddings. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1753–1762. ACM, August 2017

    Google Scholar 

  12. Perozzi, B., Kulkarni, V., Skiena, S.: Walklets: multiscale graph embeddings for interpretable network classification. arXiv preprint arXiv:1605.02115 (2016)

  13. Li, J., Zhu, J., Zhang, B.: Discriminative deep random walk for network classification. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 1004–1013 (2016)

    Google Scholar 

  14. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM, August 2014

    Google Scholar 

  15. Cheng, W., Greaves, C., Warren, M.: From n-gram to SkipGram to concgram. Int. J. Corpus Linguist. 11(4), 411–433 (2006)

    Article  Google Scholar 

  16. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077. International World Wide Web Conferences Steering Committee, May 2015

    Google Scholar 

  17. Chamberlain, B.P., Clough, J., Deisenroth, M.P.: Neural embeddings of graphs in hyperbolic space. arXiv preprint arXiv:1705.10359 (2017)

  18. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguná, M.: Hyperbolic geometry of complex networks. Phys. Rev. E 82(3), 036106 (2010)

    Article  MathSciNet  Google Scholar 

  19. Papadopoulos, F., Kitsak, M., Serrano, M.Á., Boguná, M., Krioukov, D.: Popularity versus similarity in growing networks. Nature 489(7417), 537 (2012)

    Article  Google Scholar 

  20. Papadopoulos, F., Psomas, C., Krioukov, D.: Network mapping by replaying hyperbolic growth. IEEE/ACM Trans. Netw. (TON) 23(1), 198–211 (2015)

    Article  Google Scholar 

  21. Lovász, L.: Random walks on graphs: a survey. In: Combinatorics, Paul Erdos Is Eighty, vol. 2(1), pp. 1–46 (1993)

    Google Scholar 

  22. Duc, D.M., van Hieu, N.: Graphs with prescribed mean curvature on Poincaré disk. Bull. Lond. Math. Soc. 27(4), 353–358 (1995)

    Article  Google Scholar 

  23. Newman, M.E.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)

    Article  MathSciNet  Google Scholar 

  24. Scikit-learn developers. Custering. https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation. Accessed 24 Feb 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurong Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, S., Wu, Y., Song, Y., Jiang, G., Su, X. (2019). Application of DeepWalk Based on Hyperbolic Coordinates on Unsupervised Clustering. In: Liu, F., Xu, J., Xu, S., Yung, M. (eds) Science of Cyber Security. SciSec 2019. Lecture Notes in Computer Science(), vol 11933. Springer, Cham. https://doi.org/10.1007/978-3-030-34637-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34637-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34636-2

  • Online ISBN: 978-3-030-34637-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics